
Mod python Manual
Release 3.3.1

Gregory Trubetskoy

February 14, 2007

E-mail: grisha@apache.org

Copyright c© 2004 Apache Software Foundation.

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

Abstract

Mod python allows embedding Python within the Apache server for a considerable boost in performance and added
flexibility in designing web based applications.

This document aims to be the only necessary and authoritative source of information about modpython, usable as a
comprehensive reference, a user guide and a tutorial all-in-one.

See Also:

Python Language Web Site
(http://www.python.org/)

for information on the Python language

Apache Server Web Site
(http://httpd.apache.org/)

for information on the Apache server

CONTENTS

1 Introduction 1
1.1 Performance. 1
1.2 Flexibility . 1
1.3 History . 1

2 Installation 5
2.1 Prerequisites. 5
2.2 Compiling . 5
2.3 Installing . 7
2.4 Testing . 8
2.5 Troubleshooting . 10

3 Tutorial 11
3.1 A Quick Start with the Publisher Handler. 11
3.2 Quick Overview of how Apache Handles Requests. 13
3.3 So what Exactly does Mod-python do?. 13
3.4 Now something More Complicated - Authentication. 15
3.5 Your Own 404 Handler. 17

4 Python API 19
4.1 Multiple Interpreters. 19
4.2 Overview of a Request Handler. 20
4.3 Overview of a Filter Handler. 22
4.4 Overview of a Connection Handler. 23
4.5 apache – Access to Apache Internals.. 23
4.6 util – Miscellaneous Utilities . 45
4.7 Cookie – HTTP State Management. 50
4.8 Session – Session Management. 53
4.9 psp – Python Server Pages. 58

5 Apache Configuration Directives 63
5.1 Request Handlers. 63
5.2 Filters. 67
5.3 Connection Handler. 68
5.4 Other Directives . 69

6 Server Side Includes 75
6.1 Overview of SSI . 75
6.2 Using Python Code. 75
6.3 Scope of Global Data. 76

i

6.4 Pre-propulating Globals. 77
6.5 Conditional Expressions. 78
6.6 Enabling INCLUDES Filter. 78

7 Standard Handlers 81
7.1 Publisher Handler. 81
7.2 PSP Handler. 84
7.3 CGI Handler . 85

8 Security 87

A Changes from Version (3.2.10) 89

B Changes from Version (3.2.8) 95

C Changes from Version (3.2.7) 97

D Changes from Version (3.1.4) 99

E Changes from Previous Major Version (2.x) 101

Index 103

ii

CHAPTER

ONE

Introduction

1.1 Performance

One of the main advantages of modpython is the increase in performance over traditional CGI. Below are results of
a very crude test. The test was done on a 1.2GHz Pentium machine running Red Hat Linux 7.3.Abwas used to poll 4
kinds of scripts, all of which imported the standard cgi module (because this is how a typical Python cgi script begins),
then output a single word ‘Hello! ’. The results are based on 10000 requests with concurrency of 1.

Standard CGI: 23 requests/s
Mod_python cgihandler: 385 requests/s
Mod_python publisher: 476 requests/s
Mod_python handler: 1203 requests/s

1.2 Flexibility

Apache processes requests in phases (e.g. read the request, parse headers, check access, etc.). These phases can
be implemented by functions called handlers. Traditionally, handlers are written in C and compiled into Apache
modules. Modpython provides a way to extend Apache functionality by writing Apache handlers in Python. For a
detailed description of the Apache request processing process, see theApache API Notes, as well as theMod python
- Integrating Python with Apachepaper.

To ease migration from CGI, a standard modpython handler is provided that simulates the CGI environment allowing
a user to run legacy scripts under modpython with no changes to the code (in most cases).

See Also:

http://dev.apache.org/
Apache Developer Resources

http://www.modpython.org/python10/
Mod Python - Integrating Python with Apache, presented at Python 10

1.3 History

Mod python originates from a project calledHttpdapy(1997). For a long time Httpdapy was not called modpython
because Httpdapy was not meant to be Apache-specific. Httpdapy was designed to be cross-platform and in fact was

1

initially written for the Netscape server (back then it was called Nsapy (1997).

Nsapy itself was based on an original concept and first code by Aaron Watters from ”Internet Programming with
Python” by Aaron Watters, Guido Van Rossum and James C. Ahlstrom, ISBN 1-55851-484-8.

Without Aaron’s inspiration, there would be no modpython. Quoting from the Httpdapy README file:

Although Nsapy only worked with Netscape servers, it was very generic in its
design and was based on some brilliant ideas that weren’t necessarily Netscape
specific. Its design is a combination of extensibility, simplicity and
efficiency that takes advantage of many of the key benefits of Python and is
totally in the spirit of Python.

This excerpt from the Httpdapy README file describes well the challenges and the solution provided by embedding
Python within the HTTP server:

While developing my first WWW applications a few years back, I found
that using CGI for programs that need to connect to relational
databases (commercial or not) is too slow because every hit requires
loading of the interpreter executable which can be megabytes in size,
any database libraries that can themselves be pretty big, plus, the
database connection/authentication process carries a very significant
overhead because it involves things like DNS resolutions, encryption,
memory allocation, etc.. Under pressure to speed up the application, I
nearly gave up the idea of using Python for the project and started
researching other tools that claimed to specialize in www database
integration. I did not have any faith in MS’s ASP; was quite
frustrated by Netscape LiveWire’s slow performance and bugginess; Cold
Fusion seemed promising, but I soon learned that writing in html-like
tags makes programs as readable as assembly. Same is true for
PHP. Besides, I *really* wanted to write things in Python.

Around the same time the Internet Programming With Python book came
out and the chapter describing how to embed Python within Netscape
server immediately caught my attention. I used the example in my
project, and developed an improved version of what I later called
Nsapy that compiled on both Windows NT and Solaris.

Although Nsapy only worked with Netscape servers, it was a very
intelligent generic OO design that, in the spirit of Python, that lent
itself for easy portability to other web servers.

Incidently, the popularity of Netscape’s servers was taking a turn
south, and so I set out to port Nsapy to other servers starting with
the most popular one, Apache. And so from Nsapy was born Httpdapy.

...continuing this saga, yours truly later learned that writing Httpdapy for every server is a task a little bigger and less
interesting than I originally imagined.

Instead, it seemed like providing a Python counterpart to the popular Perl Apache extension modperl that would give
Python users the same (or better) capability would be a much more exciting thing to do.

2 Chapter 1. Introduction

And so it was done. The first release of modpython happened in May of 2000.

1.3. History 3

4

CHAPTER

TWO

Installation

Note: By far the best place to get help with installation and other issues is the modpython mailing list. Please take
a moment to join the modpython mailing list by sending an e-mail with the word ‘subscribe ’ in the subject to
mod python-request@modpython.org.

Also check out Graham Dumpleton’s assorted articles on modpython at
http://www.dscpl.com.au/wiki/ModPython/Articles. These include alternate instructions for getting a first modpython
handler working, as well as articles covering problems, short comings and constraints in various versions of
mod python.

2.1 Prerequisites

• Python 2.3.4 or later. Python versions less than 2.3 will not work.

• Apache 2.0.54 or later. Apache versions 2.0.47 to 2.0.53 may work but have not been tested with this release.
(For Apache 1.3.x, use modpython version 2.7.x).

In order to compile modpython you will need to have the include files for both Apache and Python, as well as the
Python library installed on your system. If you installed Python and Apache from source, then you already have
everything needed. However, if you are using prepackaged software (e.g. Red Hat Linux RPM, Debian, or Solaris
packages from sunsite, etc) then chances are, you have just the binaries and not the sources on your system. Often, the
Apache and Python include files and libraries necessary to compile modpython are part of separate “development”
package. If you are not sure whether you have all the necessary files, either compile and install Python and Apache
from source, or refer to the documentation for your system on how to get the development packages.

2.2 Compiling

There are two ways in which modules can be compiled and linked to Apache - statically, or as a DSO (Dynamic Shared
Object).

DSOis a more popular approach nowadays and is the recommended one for modpython. The module gets compiled
as a shared library which is dynamically loaded by the server at run time.

The advantage of DSO is that a module can be installed without recompiling Apache and used as needed. A more
detailed description of the Apache DSO mechanism is available athttp://httpd.apache.org/docs-2.0/dso.html.

At this time only DSO is supported by modpython.

Static linking is an older approach. With dynamic linking available on most platforms it is used less and less. The
main drawback is that it entails recompiling Apache, which in many instances is not a favorable option.

5

2.2.1 Running ./configure

The ./configure script will analyze your environment and create custom Makefiles particular to your system. Aside
from all the standard autoconf stuff,./configuredoes the following:

• Finds out whether a program calledapxs is available. This program is part of the standard Apache distribution,
and is necessary for DSO compilation. If apxs cannot be found in your PATH or in/usr/local/apache/bin, DSO
compilation will not be available.

You can manually specify the location of apxs by using the--with-apxs option, e.g.:

$./configure --with-apxs=/usr/local/apache/bin/apxs

It is recommended that you specify this option.

• Checks your Python version and attempts to figure out wherelibpython is by looking at various parameters
compiled into your Python binary. By default, it will use thepython program found in your PATH.

If the first Python binary in the path is not suitable or not the one desired for modpython, you can specify an
alternative location with the--with-python option, e.g:

$./configure --with-python=/usr/local/bin/python2.3

• Sets the directory for the apache mutex locks. The default is/tmp. The directory must exist and be writable by
the owner of the apache process.

Use--with-mutex-dir option, e.g:

$./configure --with-mutex-dir=/var/run/mod_python

The mutex directory can also be specified in using aPythonOptiondirective. SeeConfiguring Apache.

New in version 3.3.0

• Sets the maximum number of locks reserved by modpython.

The mutexes used for locking are a limited resource on some systems. Increasing the maximum number of
locks may increase performance when using session locking. The default is 8. A reasonable number for higher
performance would be 32. Use--with-max-locks option, e.g:

$./configure --with-max-locks=32

The number of locks can also be specified in using aPythonOptiondirective. SeeConfiguring Apache.

New in version 3.2.0

• Attempts to locateflex and determine its version. Ifflex cannot be found in your PATHconfigure will fail. If
the wrong version is foundconfigurewill generate a warning. You can generally ignore this warning unless you
need to re-createsrc/psp parser.c.

6 Chapter 2. Installation

The parser used by psp (See 4.9) is written in C generated usingflex. This requires a reentrant version offlex
which at this time is 2.5.31. Most platforms however ship with version 2.5.4 which is not suitable, so a pre-
generated copy of pspparser.c is included with the source. If you do need to compilesrc/psp parser.c you
must get the correctflex version.

If the first flex binary in the path is not suitable or not the one desired you can specify an alternative location
with the--with-flex option, e.g:

$./configure --with-flex=/usr/local/bin/flex

New in version 3.2.0

• The python source is required to build the modpython documentation.

You can safely ignore this option unless you want to build the the documentation. If you want to build the
documentation, specify the path to your python source with the--with-python-src option, eg.

$./configure --with-python-src=/usr/src/python2.3

New in version 3.2.0

2.2.2 Running make

• To start the build process, simply run

$ make

2.3 Installing

2.3.1 Running make install

• This part of the installation needs to be done as root.

$ su
make install

– This will simply copy the library into your Apachelibexec directory, where all the other modules are.

– Lastly, it will install the Python libraries insite-packages and compile them.

NB: If you wish to selectively install just the Python libraries or the DSO (which may not always require
superuser privileges), you can use the followingmake targets:install py lib andinstall dso

2.3. Installing 7

2.3.2 Configuring Apache

LoadModule

If you compiled mod python as a DSO, you will need to tell Apache to load the module by adding the following
line in the Apache configuration file, usually calledhttpd.conf or apache.conf:

LoadModule python_module libexec/mod_python.so

The actual path tomod python.so may vary, but make install should report at the very end exactly where
mod python.sowas placed and how theLoadModule directive should appear.

Mutex Directory

The default directory for mutex lock files is/tmp. The default value can be be specified at compile time using
./configure —-with-mutex-dir.

Alternatively this value can be overriden at apache startup using aPythonOption.

PythonOption mod_python.mutex_directory "/tmp"

This may only be used in the server configuration context. It will be ignored if used in a directory, virtual
host, htaccess or location context. The most logical place for this directive in your apache configuration file is
immediately following theLoadModule directive.

New in version 3.3.0

Mutex Locks

Mutexes are used in modpython for session locking. The default value is 8.

On some systems the locking mechanism chosen uses valuable system resources. Notably on RH 8 sysv ipc is
used, which by default provides only 128 semaphores system-wide. On many other systems flock is used which
may result in a relatively large number of open files.

The optimal number of necessary locks is not clear. Increasing the maximum number of locks may increase
performance when using session locking. A reasonable number for higher performance might be 32.

The maximum number of locks can be specified at compile time using./configure —-with-max-locks.

Alternatively this value can be overriden at apache startup using aPythonOption.

PythonOption mod_python.mutex_locks 8

This may only be used in the server configuration context. It will be ignored if used in a directory, virtual
host, htaccess or location context. The most logical place for this directive in your apache configuration file is
immediately following theLoadModule directive.

New in version 3.3.0

2.4 Testing

Warning : These instructions are meant to be followed if you are using modpython 3.x or later. If you are using
mod python 2.7.x (namely, if you are using Apache 1.3.x), please refer to the proper documentation.

8 Chapter 2. Installation

1. Make some directory that would be visible on your web site, for example, htdocs/test.

2. Add the following Apache directives, which can appear in either the main server configuration file, or.htac-
cess. If you are going to be using the.htaccess file, you will not need the<Directory> tag below (the
directory then becomes the one in which the.htaccess file is located), and you will need to make sure the
AllowOverride directive applicable to this directory has at leastFileInfo specified. (The default is
None, which will not work.)

<Directory /some/directory/htdocs/test>
AddHandler mod_python .py
PythonHandler mptest
PythonDebug On

</Directory>

(Substitute/some/directory above for something applicable to your system, usually your Apache ServerRoot)

3. This redirects all requests for URLs ending in.py to the mod python handler. modpython receives those
requests and looks for an appropriate PythonHandler to handle them. Here, there is a single PythonHandler
directive defining mptest as the python handler to use. We’ll see next how this python handler is defined.

4. At this time, if you made changes to the main configuration file, you will need to restart Apache in order for the
changes to take effect.

5. Edit mptest.py file in the htdocs/test directory so that is has the following lines (be careful when cutting and
pasting from your browser, you may end up with incorrect indentation and a syntax error):

from mod_python import apache

def handler(req):
req.content_type = ’text/plain’
req.write("Hello World!")
return apache.OK

6. Point your browser to the URL referring to themptest.py; you should see ‘Hello World! ’. If you didn’t -
refer to the troubleshooting section next.

7. Note that according to the configuration written above, you can also point your browser to any URL ending in
.py in the test directory. You can for example point your browser to/test/foobar.py and it will be handled by
mptest.py. That’s because you explicitely set the handler to always bemptest, whatever the requested file was.
If you want to have many handler files namedhandler1.py, handler2.py and so on, and have them accessible
on /test/handler1.py, /test/handler2.py, etc., then you have to use a higher level handler system such as the
mod python publisher (see 3.1), mpservlets or Vampire. Those are just special modpython handler that know
how to map requests to a dynamically loaded handler.

8. If everything worked well, move on to Chapter 3,Tutorial.

See Also:

http://www.astro.umass.edu/%7edpopowich/python/mpservlets/
mpservlets

http://www.dscpl.com.au/projects/vampire
Vampire

2.4. Testing 9

2.5 Troubleshooting

There are a few things you can try to identify the problem:

• Carefully study the error output, if any.

• Check the server error log file, it may contain useful clues.

• Try running Apache from the command line in single process mode:

./httpd -X

This prevents it from backgrounding itself and may provide some useful information.

• Beginning with mod python 3.2.0, you can use the modpython.testhandler to diagnose your configuration.
Add this to yourhttpd.conf file :

<Location /mpinfo>
SetHandler mod_python
PythonHandler mod_python.testhandler

</Location>

Now point your browser to the/mpinfo URL (e.g.http://localhost/mpinfo) and note down the information given.
This will help you reporting your problem to the modpython list.

• Ask on the modpython list. Make sure to provide specifics such as:

– Mod python version.

– Your operating system type, name and version.

– Your Python version, and any unusual compilation options.

– Your Apache version.

– Relevant parts of the Apache config, .htaccess.

– Relevant parts of the Python code.

10 Chapter 2. Installation

CHAPTER

THREE

Tutorial

So how can I make this work?

This is a quick guide to getting started with modpython programming once you have it installed. This isnot an
installation manual!

It is also highly recommended to read (at least the top part of) Section 4,Python APIafter completing this tutorial.

3.1 A Quick Start with the Publisher Handler

This section provides a quick overview of the Publisher handler for those who would like to get started without getting
into too much detail. A more thorough explanation of how modpython handlers work and what a handler actually is
follows on in the later sections of the tutorial.

The publisher handler is provided as one of the standard modpython handlers. To get the publisher handler
working, you will need the following lines in your config:

AddHandler mod_python .py
PythonHandler mod_python.publisher
PythonDebug On

The following example will demonstrate a simple feedback form. The form will ask for the name, e-mail address
and a comment and construct an e-mail to the webmaster using the information submitted by the user. This simple
application consists of two files:form.html - the form to collect the data, andform.py - the target of the form’s action.

Here is the html for the form:

<html>
Please provide feedback below:

<p>
<form action="form.py/email" method="POST">

Name: <input type="text" name="name">

Email: <input type="text" name="email">

Comment: <textarea name="comment" rows=4 cols=20></textarea>

<input type="submit">

</form>
</html>

11

Note theaction element of the<form> tag points toform.py/email . We are going to create a file called
form.py, like this:

import smtplib

WEBMASTER = "webmaster" # webmaster e-mail
SMTP_SERVER = "localhost" # your SMTP server

def email(req, name, email, comment):

make sure the user provided all the parameters
if not (name and email and comment):

return "A required parameter is missing, \
please go back and correct the error"

create the message text
msg = """\

From: %s
Subject: feedback
To: %s

I have the following comment:

%s

Thank You,

%s

""" % (email, WEBMASTER, comment, name)

send it out
conn = smtplib.SMTP(SMTP_SERVER)
conn.sendmail(email, [WEBMASTER], msg)
conn.quit()

provide feedback to the user
s = """\

<html>

Dear %s,

Thank You for your kind comments, we
will get back to you shortly.

</html>""" % name

return s

When the user clicks the Submit button, the publisher handler will load theemail function in theform module,
passing it the form fields as keyword arguments. It will also pass the request object asreq .

Note that you do not have to havereq as one of the arguments if you do not need it. The publisher handler is smart
enough to pass your function only those arguments that it will accept.

The data is sent back to the browser via the return value of the function.

Even though the Publisher handler simplifies modpython programming a great deal, all the power of modpython
is still available to this program, since it has access to the request object. You can do all the same things you can
do with a “native” mod python handler, e.g. set custom headers viareq.headers out , return errors by rais-

12 Chapter 3. Tutorial

ing apache.SERVER ERRORexceptions, write or read directly to and from the client viareq.write() and
req.read() , etc.

Read Section 7.1Publisher Handlerfor more information on the publisher handler.

3.2 Quick Overview of how Apache Handles Requests

If you would like delve in deeper into the functionality of modpython, you need to understand what a handler is.

Apache processes requests inphases. For example, the first phase may be to authenticate the user, the next phase to
verify whether that user is allowed to see a particular file, then (next phase) read the file and send it to the client. A
typical static file request involves three phases: (1) translate the requested URI to a file location (2) read the file and
send it to the client, then (3) log the request. Exactly which phases are processed and how varies greatly and depends
on the configuration.

A handleris a function that processes one phase. There may be more than one handler available to process a particular
phase, in which case they are called by Apache in sequence. For each of the phases, there is a default Apache handler
(most of which by default perform only very basic functions or do nothing), and then there are additional handlers
provided by Apache modules, such as modpython.

Mod python provides every possible handler to Apache. Modpython handlers by default do not perform any func-
tion, unless specifically told so by a configuration directive. These directives begin with ‘Python ’ and end with
‘Handler ’ (e.g. PythonAuthenHandler) and associate a phase with a Python function. So the main function of
mod python is to act as a dispatcher between Apache handlers and Python functions written by a developer like you.

The most commonly used handler isPythonHandler . It handles the phase of the request during which the actual
content is provided. Because it has no name, it is sometimes referred to as asgenerichandler. The default Apache
action for this handler is to read the file and send it to the client. Most applications you will write will override this
one handler. To see all the possible handlers, refer to Section 5,Apache Directives.

3.3 So what Exactly does Mod-python do?

Let’s pretend we have the following configuration:

<Directory /mywebdir>
AddHandler mod_python .py
PythonHandler myscript
PythonDebug On

</Directory>

NB: /mywebdir is an absolute physical path.

And let’s say that we have a python program (Windows users: substitute forward slashes for backslashes)
‘ /mywedir/myscript.py’ that looks like this:

from mod_python import apache

def handler(req):

req.content_type = "text/plain"
req.write("Hello World!")

return apache.OK

3.2. Quick Overview of how Apache Handles Requests 13

Here is what’s going to happen: TheAddHandler directive tells Apache that any request for any file end-
ing with ‘.py’ in the ‘/mywebdir’ directory or a subdirectory thereof needs to be processed by modpython. The
‘PythonHandler myscript ’ directive tells mod python to process the generic handler using themyscript
script. The ‘PythonDebug On ’ directive instructs modpython in case of an Python error to send error output to
the client (in addition to the logs), very useful during development.

When a request comes in, Apache starts stepping through its request processing phases calling handlers in
mod python. The modpython handlers check whether a directive for that handler was specified in the configura-
tion. (Remember, it acts as a dispatcher.) In our example, no action will be taken by modpython for all handlers
except for the generic handler. When we get to the generic handler, modpython will notice ‘PythonHandler
myscript ’ directive and do the following:

1. If not already done, prepend the directory in which thePythonHandler directive was found tosys.path .

2. Attempt to import a module by namemyscript . (Note that if myscript was in a subdirectory of the
directory wherePythonHandler was specified, then the import would not work because said subdirectory
would not be in thesys.path . One way around this is to use package notation, e.g. ‘PythonHandler
subdir.myscript ’.)

3. Look for a function calledhandler in myscript .

4. Call the function, passing it a request object. (More on what a request object is later)

5. At this point we’re inside the script:

• from mod_python import apache

This imports the apache module which provides us the interface to Apache. With a few rare exceptions,
every mod python program will have this line.

• def handler(req):

This is ourhandlerfunction declaration. It is called ‘handler ’ because modpython takes the name of
the directive, converts it to lower case and removes the word ‘python ’. Thus ‘PythonHandler ’ be-
comes ‘handler ’. You could name it something else, and specify it explicitly in the directive using ‘:: ’.
For example, if the handler function was called ‘spam’, then the directive would be ‘PythonHandler
myscript::spam ’.
Note that a handler must take one argument - the request object. The request object is an object that
provides all of the information about this particular request - such as the IP of client, the headers, the URI,
etc. The communication back to the client is also done via the request object, i.e. there is no “response”
object.

•
req.content_type = "text/plain"

This sets the content type to ‘text/plain ’. The default is usually ‘text/html ’, but since our handler
doesn’t produce any html, ‘text/plain ’ is more appropriate.Important: you shouldalways make
sure this is setbefore any call to ‘req.write ’. When you first call ‘req.write ’, the response HTTP
header is sent to the client and all subsequent changes to the content type (or other HTTP headers) are
simply lost.

•
req.write("Hello World!")

This writes the ‘Hello World! ’ string to the client. (Did I really have to explain this one?)

14 Chapter 3. Tutorial

•
return apache.OK

This tells Apache that everything went OK and that the request has been processed. If things
did not go OK, that line could be returnapache.HTTP INTERNAL SERVERERRORor return
apache.HTTP FORBIDDEN. When things do not go OK, Apache will log the error and generate an
error message for the client.

Some food for thought: If you were paying attention, you noticed that the text above didn’t specify that in
order for the handler code to be executed, the URL needs to refer tomyscript.py. The only requirement was
that it refers to a.py file. In fact the name of the file doesn’t matter, and the file referred to in the URL
doesn’t have to exist. So, given the above configuration, ‘http://myserver/mywebdir/myscript.py ’ and
‘http://myserver/mywebdir/montypython.py ’ would give the exact same result. The important thing
to understand here is that a handler augments the server behaviour when processing a specific type of file, not an
individual file.

At this point, if you didn’t understand the above paragraph, go back and read it again, until you do.

3.4 Now something More Complicated - Authentication

Now that you know how to write a primitive handler, let’s try something more complicated.

Let’s say we want to password-protect this directory. We want the login to be ‘spam’, and the password to be ‘eggs ’.

First, we need to tell Apache to call ourauthenticationhandler when authentication is needed. We do this by adding
thePythonAuthenHandler . So now our config looks like this:

<Directory /mywebdir>
AddHandler mod_python .py
PythonHandler myscript
PythonAuthenHandler myscript
PythonDebug On

</Directory>

Notice that the same script is specified for two different handlers. This is fine, because if you remember, modpython
will look for different functions within that script for the different handlers.

Next, we need to tell Apache that we are using Basic HTTP authentication, and only valid users are allowed (this is
fairly basic Apache stuff, so we’re not going to go into details here). Our config looks like this now:

<Directory /mywebdir>
AddHandler mod_python .py
PythonHandler myscript
PythonAuthenHandler myscript
PythonDebug On
AuthType Basic
AuthName "Restricted Area"
require valid-user

</Directory>

Note that depending on which version of Apache is being used, you may need to set either theAuthAuthoritative
or AuthBasicAuthoritative directive toOff to tell Apache that you want allow the task of performing basic
authentication to fall through to your handler.

3.4. Now something More Complicated - Authentication 15

Now we need to write an authentication handler function in ‘myscript.py’. A basic authentication handler would look
like this:

from mod_python import apache

def authenhandler(req):

pw = req.get_basic_auth_pw()
user = req.user

if user == "spam" and pw == "eggs":
return apache.OK

else:
return apache.HTTP_UNAUTHORIZED

Let’s look at this line by line:

•
def authenhandler(req):

This is the handler function declaration. This one is calledauthenhandler because, as we already described
above, modpython takes the name of the directive (PythonAuthenHandler), drops the word ‘Python ’
and converts it lower case.

•
pw = req.get_basic_auth_pw()

This is how we obtain the password. The basic HTTP authentication transmits the password in base64 encoded
form to make it a little bit less obvious. This function decodes the password and returns it as a string. Note that
we have to call this function before obtaining the user name.

•
user = req.user

This is how you obtain the username that the user entered.

•
if user == "spam" and pw == "eggs":

return apache.OK

We compare the values provided by the user, and if they are what we were expecting, we tell Apache to go
ahead and proceed by returningapache.OK . Apache will then consider this phase of the request complete,
and proceed to the next phase. (Which in this case would behandler() if it’s a .py file).

•
else:

return apache.HTTP_UNAUTHORIZED

16 Chapter 3. Tutorial

Else, we tell Apache to returnHTTP UNAUTHORIZEDto the client, which usually causes the browser to pop a
dialog box asking for username and password.

3.5 Your Own 404 Handler

In some cases, you may wish to return a 404 (HTTP NOT FOUND) or other non-200 result from your handler. There
is a trick here. if you returnHTTP NOT FOUNDfrom your handler, Apache will handle rendering an error page. This
can be problematic if you wish your handler to render it’s own error page.

In this case, you need to setreq.status = apache.HTTP NOT FOUND, render your page, and then
return(apache.OK) :

from mod_python import apache

def handler(req):
if req.filename[-17:] == ’apache-error.html’:

make Apache report an error and render the error page
return(apache.HTTP_NOT_FOUND)

if req.filename[-18:] == ’handler-error.html’:
use our own error page
req.status = apache.HTTP_NOT_FOUND
pagebuffer = ’Page not here. Page left, not know where gone.’

else:
use the contents of a file
pagebuffer = open(req.filename, ’r’).read()

fall through from the latter two above
req.write(pagebuffer)
return(apache.OK)

Note that if wishing to returning an error page from a handler phase other than the response handler, the value
apache.DONE must be returned instead ofapache.OK . If this is not done, subsequent handler phases will still
be run. The value ofapache.DONE indicates that processing of the request should be stopped immediately. If us-
ing stacked response handlers, thenapache.DONE should also be returned in that situation to prevent subsequent
handlers registered for that phase being run if appropriate.

3.5. Your Own 404 Handler 17

18

CHAPTER

FOUR

Python API

4.1 Multiple Interpreters

When working with modpython, it is important to be aware of a feature of Python that is normally not used when
using the language for writing scripts to be run from command line. This feature is not available from within Python
itself and can only be accessed through theC language API.

Python C API provides the ability to createsubinterpreters. A more detailed description of a subinterpreter is given
in the documentation for thePy NewInterpreter() function. For this discussion, it will suffice to say that each
subinterpreter has its own separate namespace, not accessible from other subinterpreters. Subinterpreters are very
useful to make sure that separate programs running under the same Apache server do not interfere with one another.

At server start-up or modpython initialization time, modpython initializes an interpreter calledmain inter-
preter. The main interpreter contains a dictionary of subinterpreters. Initially, this dictionary is empty. With
every request, as needed, subinterpreters are created, and references to them are stored in this dictionary. The
dictionary is keyed on a string, also known asinterpreter name. This name can be any string. The main in-
terpreter is named ‘main interpreter ’. The way all other interpreters are named can be controlled by
PythonInterp* directives. Default behaviour is to name interpreters using the Apache virtual server name
(ServerName directive). This means that all scripts in the same virtual server execute in the same subinter-
preter, but scripts in different virtual servers execute in different subinterpreters with completely separate namespaces.
PythonInterpPerDirectory andPythonInterpPerDirective directives alter the naming convention to
use the absolute path of the directory being accessed, or the directory in which thePython*Handler was encoun-
tered, respectively.PythonInterpreter can be used to force the interpreter name to a specific string overriding
any naming conventions.

Once created, a subinterpreter will be reused for subsequent requests. It is never destroyed and exists until the Apache
process dies.

You can find out the name of the interpreter under which you’re running by peeking atreq.interpreter .

Note that if any third party module is being used which has a C code component that uses the simplified API for access
to the Global Interpreter Lock (GIL) for Python extension modules, then the interpreter name must be forcibly set to
be ‘main interpreter ’. This is necessary as such a module will only work correctly if run within the context of
the first Python interpreter created by the process. If not forced to run under the ‘main interpreter ’, a range of
Python errors can arise, each typically referring to code being run inrestricted mode.

See Also:

Python C Language API
(http://www.python.org/doc/current/api/api.html)

Python C Language API

PEP 0311 - Simplified Global Interpreter Lock Acquisition for Extensions
(http://www.python.org/peps/pep-0311.html)

19

PEP 0311 - Simplified Global Interpreter Lock Acquisition for Extensions

4.2 Overview of a Request Handler

A handleris a function that processes a particular phase of a request. Apache processes requests in phases - read the
request, process headers, provide content, etc. For every phase, it will call handlers, provided by either the Apache
core or one of its modules, such as modpython which passes control to functions provided by the user and written in
Python. A handler written in Python is not any different from a handler written in C, and follows these rules:

A handler function will always be passed a reference to a request object. (Throughout this manual, the request object
is often referred to by thereq variable.)

Every handler can return:

• apache.OK , meaning this phase of the request was handled by this handler and no errors occurred.

• apache.DECLINED , meaning this handler has not handled this phase of the request to completion and Apache
needs to look for another handler in subsequent modules.

• apache. HTTP ERROR, meaning an HTTP error occurred.HTTP ERRORcan be any of the following:

20 Chapter 4. Python API

HTTP_CONTINUE = 100
HTTP_SWITCHING_PROTOCOLS = 101
HTTP_PROCESSING = 102
HTTP_OK = 200
HTTP_CREATED = 201
HTTP_ACCEPTED = 202
HTTP_NON_AUTHORITATIVE = 203
HTTP_NO_CONTENT = 204
HTTP_RESET_CONTENT = 205
HTTP_PARTIAL_CONTENT = 206
HTTP_MULTI_STATUS = 207
HTTP_MULTIPLE_CHOICES = 300
HTTP_MOVED_PERMANENTLY = 301
HTTP_MOVED_TEMPORARILY = 302
HTTP_SEE_OTHER = 303
HTTP_NOT_MODIFIED = 304
HTTP_USE_PROXY = 305
HTTP_TEMPORARY_REDIRECT = 307
HTTP_BAD_REQUEST = 400
HTTP_UNAUTHORIZED = 401
HTTP_PAYMENT_REQUIRED = 402
HTTP_FORBIDDEN = 403
HTTP_NOT_FOUND = 404
HTTP_METHOD_NOT_ALLOWED = 405
HTTP_NOT_ACCEPTABLE = 406
HTTP_PROXY_AUTHENTICATION_REQUIRED= 407
HTTP_REQUEST_TIME_OUT = 408
HTTP_CONFLICT = 409
HTTP_GONE = 410
HTTP_LENGTH_REQUIRED = 411
HTTP_PRECONDITION_FAILED = 412
HTTP_REQUEST_ENTITY_TOO_LARGE = 413
HTTP_REQUEST_URI_TOO_LARGE = 414
HTTP_UNSUPPORTED_MEDIA_TYPE = 415
HTTP_RANGE_NOT_SATISFIABLE = 416
HTTP_EXPECTATION_FAILED = 417
HTTP_UNPROCESSABLE_ENTITY = 422
HTTP_LOCKED = 423
HTTP_FAILED_DEPENDENCY = 424
HTTP_INTERNAL_SERVER_ERROR = 500
HTTP_NOT_IMPLEMENTED = 501
HTTP_BAD_GATEWAY = 502
HTTP_SERVICE_UNAVAILABLE = 503
HTTP_GATEWAY_TIME_OUT = 504
HTTP_VERSION_NOT_SUPPORTED = 505
HTTP_VARIANT_ALSO_VARIES = 506
HTTP_INSUFFICIENT_STORAGE = 507
HTTP_NOT_EXTENDED = 510

As an alternative to returning an HTTP error code, handlers can signal an error byraising the
apache.SERVER RETURNexception, and providing an HTTP error code as the exception value, e.g.

raise apache.SERVER_RETURN, apache.HTTP_FORBIDDEN

4.2. Overview of a Request Handler 21

Handlers can send content to the client using thereq.write() method.

Client data, such as POST requests, can be read by using thereq.read() function.

Note: The directory of the ApachePython*Handler directive in effect is prepended to thesys.path . If the
directive was specified in a server config file outside any<Directory> , then the directory is unknown and not
prepended.

An example of a minimalistic handler might be:

from mod_python import apache

def requesthandler(req):
req.content_type = "text/plain"
req.write("Hello World!")
return apache.OK

4.3 Overview of a Filter Handler

A filter handleris a function that can alter the input or the output of the server. There are two kinds of filters -input
andoutputthat apply to input from the client and output to the client respectively.

At this time mod python supports only request-level filters, meaning that only the body of HTTP request or response
can be filtered. Apache provides support for connection-level filters, which will be supported in the future.

A filter handler receives afilter object as its argument. The request object is available as well viafilter.req , but
all writing and reading should be done via the filter’s object read and write methods.

Filters need to be closed when a read operation returns None (indicating End-Of-Stream).

The return value of a filter is ignored. Filters cannot decline processing like handlers, but the same effect can be
achieved by using thefilter.pass on() method.

Filters must first be registered usingPythonInputFilter or PythonOutputFilter , then added using the
ApacheAdd/SetInputFilter or Add/SetOutputFilter directives.

Here is an example of how to specify an output filter, it tells the server that all .py files should processed by CAPI-
TALIZE filter:

PythonOutputFilter capitalize CAPITALIZE
AddOutputFilter CAPITALIZE .py

And here is what the code for the ‘capitalize.py’ might look like:

22 Chapter 4. Python API

from mod_python import apache

def outputfilter(filter):

s = filter.read()
while s:

filter.write(s.upper())
s = filter.read()

if s is None:
filter.close()

When writing filters, keep in mind that a filter will be called any time anything upstream requests an IO operation, and
the filter has no control over the amount of data passed through it and no notion of where in the request processing it
is called. For example, within a single request, a filter may be called once or five times, and there is no way for the
filter to know beforehand that the request is over and which of calls is last or first for this request, thought encounter
of an EOS (None returned from a read operation) is a fairly strong indication of an end of a request.

Also note that filters may end up being called recursively in subrequests. To avoid the data being altered more than
once, always make sure you are not in a subrequest by examining thereq.main value.

For more information on filters, seehttp://httpd.apache.org/docs-2.0/developer/filters.html.

4.4 Overview of a Connection Handler

A connection handlerhandles the connection, starting almost immediately from the point the TCP connection to the
server was made.

Unlike HTTP handlers, connection handlers receive aconnectionobject as an argument.

Connection handlers can be used to implement protocols. Here is an example of a simple echo server:

Apache configuration:

PythonConnectionHandler echo

Contents ofecho.py file:

from mod_python import apache

def connectionhandler(conn):

while 1:
conn.write(conn.readline())

return apache.OK

4.5 apache – Access to Apache Internals.

4.4. Overview of a Connection Handler 23

The Python interface to Apache internals is contained in a module appropriately namedapache , located inside the
mod python package. This module provides some important objects that map to Apache internal structures, as well
as some useful functions, all documented below. (The request object also provides an interface to Apache internals, it
is covered in its own section of this manual.)

Theapache module can only be imported by a script running under modpython. This is because it depends on a
built-in module apache provided by modpython.

It is best imported like this:

from mod_python import apache

mod python.apache module defines the following functions and objects. For a more in-depth look at Apache
internals, see theApache Developer page

4.5.1 Functions

log error (message[, level, server])
An interface to the Apacheap log error() function. messageis a string with the error message,level is
one of the following flags constants:

APLOG_EMERG
APLOG_ALERT
APLOG_CRIT
APLOG_ERR
APLOG_WARNING
APLOG_NOTICE
APLOG_INFO
APLOG_DEBUG
APLOG_NOERRNO

serveris a reference to areq.server object. If serveris not specified, then the error will be logged to the
default error log, otherwise it will be written to the error log for the appropriate virtual server. Whenserveris
not specified, the setting of LogLevel does not apply, the LogLevel is dictated by an httpd compile-time default,
usuallywarn .

If you have a reference to a request object available, consider usingreq.log error instead, it will prepend
request-specific information such as the source IP of the request to the log entry.

import module (module name[, autoreload=None, log=None, path=None])
This function can be used to import modules.

Note: This function and the module importer were completely reimplemented in modpython 3.3. If you are
using an older version of modpython do not rely on this documentation and instead refer to the documentation
for the specific version you are using as the new importer does not behave exactly the same and has additional
features.

If you are trying to port code from an older version of modpython to mod python 3.3 and can’t work out why
the new importer is not working for you, you can enable the old module importer for specific Python interpreter
instances by using:

PythonOption mod_python.legacy.importer name

where ’name’ is the name of the interpreter instance or ’*’ for it to be applied to all interpreter instances. This
option should be placed at global context within the main Apache configuration files.

24 Chapter 4. Python API

When using theapache.import module() function, themodule nameshould be a string containing
either the module name, or a path to the actual code file for the module; where a module is a candidate for
automatic module reloading,autoreloadindicates whether the module should be reloaded if it has changed
since the last import; whenlog is true, a message will be written to the logs when a module is reloaded;path
can be a list specifying additional directories to be searched for modules.

With the introduction of modpython 3.3, the default arguments for theautoreloadand log arguments have
been changed toNone, with the arguments effectively now being unnecessary except in special circumstances.
When the arguments are left as the default ofNone, the Apache configuration in scope at the time of the call
will always be consulted automatically for any settings for thePythonAutoReload andPythonDebug
directives respectively.

Example:

from mod_python import apache
module = apache.import_module(’module_name’)

The apache.import module() function is not just a wrapper for the standard Python module import
mechanism. The purpose of the function and the modpython module importer in general, is to provide a means
of being able to import modules based on their exact location, with modules being distinguished based on their
location rather than just the name of the module. Distinguishing modules in this way, rather than by name alone,
means that the same module name can be used for handlers and other code in multiple directories and they will
not interfere with each other.

A secondary feature of the module importer is to implement a means of having modules automatically reloaded
when the corresponding code file has been changed on disk. Having modules be able to be reloaded in this
way means that it is possible to change the code for a web application without having to restart the whole
Apache web server. Although this was always the intent of the module importer, prior to modpython 3.3, its
effectiveness was limited. With modpython 3.3 however, the module reloading feature is much more robust
and will correctly reload parent modules even when it was only a child module what was changed.

When theapache.import module() function is called with just the name of the module, as opposed to a
path to the actual code file for the module, a search has to be made for the module. The first set of directories
that will be checked are those specified by thepathargument if supplied.

Where the function is called from another module which had previously been imported by the modpython
importer, the next directory which will be checked will be the same directory as the parent module is located.
Where that same parent module contains a global data variable calledmp path containing a list of
directories, those directories will also be searched.

Finally, the mod python module importer will search directories specified by thePythonOption called
mod python.importer.path .

For example:

PythonOption mod_python.importer.path "[’/some/path’]"

The argument to the option must be in the form of a Python list. The enclosing quotes are to ensure that
Apache interprets the argument as a single value. The list must be self contained and cannot reference any prior
value of the option. The list MUST NOT referencesys.path nor should any directory which also appears in
sys.path be listed in the modpython module importer search path.

When searching for the module, a check is made for any code file with the name specified and having a ’.py’
extension. Because only modules implemented as a single file will be found, packages will not be found nor
modules contained within a package.

In any case where a module cannot be found, control is handed off to the standard Python module importer
which will attempt to find the module or package by searchingsys.path .

4.5. apache – Access to Apache Internals. 25

Note that only modules found by the modpython module importer are candidates for automatic module reload-
ing. That is, where the modpython module importer could not find a module and handed the search off to the
standard Python module importer, those modules or packages will not be able to be reloaded.

Although true Python packages are not candidates for reloading and must be located in a directory listed in
sys.path , another form of packaging up modules such that they can be maintained within their own names-
pace is supported. When this mechanism is used, these modules will be candidates for reloading when found by
the mod python module importer.

In this scheme for maintaining a pseudo package, individual modules are still placed into a directory, but the
init .py file in the directory has no special meaning and will not be automatically imported as is the

case with true Python packages. Instead, any module within the directory must always be explicitly identified
when performing an import.

To import a named module contained within these pseudo packages, rather than using a ’.’ to distinguish a sub
module from the parent, a ’/’ is used instead. For example:

from mod_python import apache
module = apache.import_module(’dirname/module_name’)

If an init .py file is present and it was necessary to import it to achieve the same result as importing the
root of a true Python package, theninit can be used as the module name. For example:

from mod_python import apache
module = apache.import_module(’dirname/__init__’)

As a true Python package is not being used, if a module in the directory needs to refer to another module in the
same directory, it should use just its name, it should not use any form of dotted path name via the root of the
package as would be the case for true Python packages. Modules in subdirectories can be imported by using a
’/’ separated path where the first part of the path is the name of the subdirectory.

As a new feature in modpython 3.3, when using the standard Python ’import’ statement to import a module, if
the import is being done from a module which was previously imported by the modpython module importer,
it is equivalent to having calledapache.import module() directly.

For example:

import name

is equivalent to:

from mod_python import apache
name = apache.import_module(’name’)

It is also possible to use constructs such as:

import name as module

and:

from name import value

26 Chapter 4. Python API

Although the ’import’ statement is used, that it maps through to theapache.import module() function
ensures that parent/child relationships are maintained correctly and reloading of a parent will still work when
only the child has been changed. It also ensures that one will not end up with modules which were separately
imported by the modpython module importer and the standard Python module importer.

With the reimplementation of the module importer in modpython 3.3, themodule nameargument may also
now be an absolute path name of an actual Python module contained in a single file. On Windows, a drive letter
can be supplied if necessary. For example:

from mod_python import apache
name = apache.import_module(’/some/path/name.py’)

or:

from mod_python import apache
import os
here = os.path.dirname(__file__)
path = os.path.join(here, ’module.py’)
module = apache.import_module(path)

Where the file has an extension, that extension must be supplied. Although it is recommended that code files
still make use of the ’.py’ extension, it is not actually a requirement and an alternate extension can be used. For
example:

from mod_python import apache
import os
here = os.path.dirname(__file__)
path = os.path.join(here, ’servlet.mps’)
servlet = apache.import_module(path)

To avoid the need to use hard coded absolute path names to modules, a few shortcuts are provided. The first of
these allow for the use of relative path names with respect to the directory the module performing the import is
located within.

For example:

from mod_python import apache

parent = apache.import_module(’../module.py’)
subdir = apache.import_module(’./subdir/module.py’)

Forward slashes must always be used for the prefixes ’./’ and ’../’, even on Windows hosts where native pathname
use a backslash. This convention of using forward slashes is used as that is what Apache normalizes all paths
to internally. If you are using Windows and have been using backward slashes withDirectory directives etc,
you are using Apache contrary to what is the accepted norm.

A further shortcut allows paths to be declared relative to what is regarded as the handler root directory. The
handler root directory is the directory context in which the activePython*Handler directive was specified.
If the directive was specified within aLocation or VirtualHost directive, or at global server scope, the
handler root will be the relevant document root for the server.

To express paths relative to the handler root, the ’˜/’ prefix should be used. A forward slash must again always
be used, even on Windows.

For example:

4.5. apache – Access to Apache Internals. 27

from mod_python import apache

parent = apache.import_module(’˜/../module.py’)
subdir = apache.import_module(’˜/subdir/module.py’)

In all cases where a path to the actual code file for a module is given, thepathargument is redundant as there is
no need to search through a list of directories to find the module. In these situations, thepath is instead taken
to be a list of directories to use as the initial value of themp path variable contained in the imported
modules instead of an empty path.

This feature can be used to attach a more restrictive search path to a set of modules rather than using the
PythonOption to set a global search path. To do this, the modules should always be imported through
a specific parent module. That module should then always import submodules using paths and supply

mp path as thepathargument to subsequent calls toapache.import module() within that mod-
ule. For example:

from mod_python import apache

module1 = apache.import_module(’./module1.py’, path=__mp_path__)
module2 = apache.import_module(’./module2.py’, path=__mp_path__)

with the module being imported as:

from mod_python import apache

parent = apache.import_module(’˜/modules/parent.py’, path=[’/some/path’])

The parent module may if required extend the value ofmp path prior to using it. Any such directories
will be added to those inherited via thepathargument. For example:

from mod_python import apache
import os

here = os.path.dirname(__file__)
subdir = os.path.join(here, ’subdir’)
__mp_path__.append(subdir)

module1 = apache.import_module(’./module1.py’, path=__mp_path__)
module2 = apache.import_module(’./module2.py’, path=__mp_path__)

In all cases where a search path is being specified which is specific to the modpython module importer, whether
it be specified using thePythonOption calledmod python.importer.path , using thepathargument
to theapache.import module() function or in the mp path attribute, the prefix ’˜/’ can be used
in a path and that path will be taken as being relative to handler root. For example:

PythonOption mod_python.importer.path "[’˜/modules’]"

If wishing to refer to the handler root directory itself, then ’˜’ can be used and the trailing slash left off. For
example:

28 Chapter 4. Python API

PythonOption mod_python.importer.path "[’˜’]"

Note that with the new module importer, as directories associated withPython*Handler directives are no
longer being added automatically tosys.path and they are instead used directly by the module importer
only when required, some existing code which expected to be able to import modules in the handler root di-
rectory from a module in a subdirectory may no longer work. In these situations it will be necessary to set
the mod python module importer path to include ’˜’ or list ’˜’ in the mp path attribute of the module
performing the import.

This trick of listing ’˜’ in the module importer path will not however help in the case where Python packages
were previously being placed into the handler root directory. In this case, the Python package should either be
moved out of the document tree and the directory where it is located listed against thePythonPath directive,
or the package converted into the pseudo packages that modpython supports and change the module imports
used to access the package.

Only modules which could be imported by the modpython module importer will be candidates for automatic
reloading when changes are made to the code file on disk. Any modules or packages which were located in a
directory listed insys.path and which were imported using the standard Python module importer will not be
candidates for reloading.

Even where modules are candidates for module reloading, unless a true value was explicitly supplied as
the autoreload option to theapache.import module() function they will only be reloaded if the
PythonAutoReload directive isOn. The default value when the directive is not specified will beOn, so
the directive need only be used when wishing to set it toOff to disable automatic reloading, such as in a
production system.

Where possible, thePythonAutoReload directive should only be specified in one place and in the root
context for a specific Python interpreter instance. If thePythonAutoReload directive is used in multiple
places with different values, or doesn’t cover all directories pertaining to a specific Python interpreter instance,
then problems can result. This is because requests against some URLs may result in modules being reloaded
whereas others may not, even when through each URL the same module may be imported from a common
location.

If absolute certainty is required that module reloading is disabled and that it isn’t being enabled through some
subset of URLs, thePythonImport directive should be used to import a special module whenever an Apache
child process is being created. This module should include a call to theapache.freeze modules()
function. This will have the effect of permanently disabling module reloading for the complete life of that
Apache child process, irrespective of what value thePythonAutoReload directive is set to.

Using the new ability within modpython 3.3 to havePythonImport call a specific function within a module
after it has been imported, one could actually dispense with creating a module and instead call the function
directory out of themod python.apache module. For example:

PythonImport mod_python.apache::freeze_modules interpreter_name

Where module reloading is being undertaken, unlike the core module importer in versions of modpython prior
to 3.3, they are not reloaded on top of existing modules, but into a completely new module instance. This means
that any code that previously relied on state information or data caches to be preserved across reloads will no
longer work.

If it is necessary to transfer such information from an old module to the new module, it is necessary to provide a
hook function within modules to transfer across the data that must be preserved. The name of this hook function
is mp clone () . The argument given to the hook function will be an empty module into which the new
module will subsequently be loaded.

When called, the hook function should copy any data from the old module to the new module. In doing this,
the code performing the copying should be cognizant of the fact that within a multithreaded Apache MPM that

4.5. apache – Access to Apache Internals. 29

other request handlers could still be trying to access and update the data to be copied. As such, the hook function
should ensure that it uses any thread locking mechanisms within the module as appropriate when copying the
data. Further, it should copy the actual data locks themselves across to the new module to ensure a clean
transition.

Because copying integral values will result in the data then being separate, it may be necessary to always store
data within a dictionary so as to provide a level of indirection which will allow the data to be usable from both
module instances while they still exist.

For example:

import threading, time

if not globals().has_key(’_lock’):
Initial import of this module.
_lock = threading.Lock()
_data1 = { ’value1’ : 0, ’value2’: 0 }
_data2 = {}

def __mp_clone__(module):
_lock.acquire()
module._lock = _lock
module._data1 = _data1
module._data2 = _data2
_lock.release()

Because the old module is about to be discarded, the data which is transferred should not consist of data objects
which are dependent on code within the old module. Data being copied across to the new module should consist
of standard Python data types, or be instances of classes contained within modules which themselves are not
candidates for reloading. Otherwise, data should be migrated by transforming it into some neutral intermediate
state, with the new module transforming it back when its code executes at the time of being imported.

If these guidelines aren’t heeded and data is dependent on code objects within the old module, it will prevent
those code objects from being unloaded and if this continues across multiple reloads, then process size may
increase over time due to old code objects being retained.

In any case, if for some reason the hook function fails and an exception is raised then both the old and new
modules will be discarded. As a last opportunity to release any resources when this occurs, an extra hook
function called mp purge () can be supplied. This function will be called with no arguments.

allow methods ([*args])
A convenience function to set values inreq.allowed . req.allowed is a bitmask that is used to construct
the ‘Allow: ’ header. It should be set before returning aHTTP NOT IMPLEMENTEDerror.

Arguments can be one or more of the following:

30 Chapter 4. Python API

M_GET
M_PUT
M_POST
M_DELETE
M_CONNECT
M_OPTIONS
M_TRACE
M_PATCH
M_PROPFIND
M_PROPPATCH
M_MKCOL
M_COPY
M_MOVE
M_LOCK
M_UNLOCK
M_VERSION_CONTROL
M_CHECKOUT
M_UNCHECKOUT
M_CHECKIN
M_UPDATE
M_LABEL
M_REPORT
M_MKWORKSPACE
M_MKACTIVITY
M_BASELINE_CONTROL
M_MERGE
M_INVALID

exists config define (name)
This function returns True if the Apache server was launched with the definition with the givenname.
This means that you can test whether Apache was launched with the-DFOOBARparameter by calling
apache.exists config define(’FOOBAR’) .

stat (fname, wanted)
This function returns an instance of anmp finfo object describing information related to the file with name
fname . Thewanted argument describes the minimum attributes which should be filled out. The resultant
object can be assigned to thereq.finfo attribute.

register cleanup (callable[, data])
Registers a cleanup that will be performed at child shutdown time. Equivalent to
server.register cleanup() , except that a request object is not required.Warning: do not pass
directly or indirectly a request object in the data parameter. Since the callable will be called at server shutdown
time, the request object won’t exist anymore and any manipulation of it in the handler will give undefined
behaviour.

config tree ()
Returns the server-level configuration tree. This tree does not include directives from .htaccess files. This is a
copyof the tree, modifying it has no effect on the actual configuration.

server root ()
Returns the value of ServerRoot.

make table ()
This function is obsolete and is an alias totable (see below).

mpm query (code)
Allows querying of the MPM for various parameters such as numbers of processes and threads. The return value

4.5. apache – Access to Apache Internals. 31

is one of three constants:

AP_MPMQ_NOT_SUPPORTED = 0 # This value specifies whether
an MPM is capable of
threading or forking.

AP_MPMQ_STATIC = 1 # This value specifies whether
an MPM is using a static # of
threads or daemons.

AP_MPMQ_DYNAMIC = 2 # This value specifies whether
an MPM is using a dynamic # of
threads or daemons.

Thecodeargument must be one of the following:

AP_MPMQ_MAX_DAEMON_USED = 1 # Max # of daemons used so far
AP_MPMQ_IS_THREADED = 2 # MPM can do threading
AP_MPMQ_IS_FORKED = 3 # MPM can do forking
AP_MPMQ_HARD_LIMIT_DAEMONS = 4 # The compiled max # daemons
AP_MPMQ_HARD_LIMIT_THREADS = 5 # The compiled max # threads
AP_MPMQ_MAX_THREADS = 6 # # of threads/child by config
AP_MPMQ_MIN_SPARE_DAEMONS = 7 # Min # of spare daemons
AP_MPMQ_MIN_SPARE_THREADS = 8 # Min # of spare threads
AP_MPMQ_MAX_SPARE_DAEMONS = 9 # Max # of spare daemons
AP_MPMQ_MAX_SPARE_THREADS = 10 # Max # of spare threads
AP_MPMQ_MAX_REQUESTS_DAEMON= 11 # Max # of requests per daemon
AP_MPMQ_MAX_DAEMONS = 12 # Max # of daemons by config

Example:

if apache.mpm_query(apache.AP_MPMQ_IS_THREADED):
do something

else:
do something else

4.5.2 Attributes

interpreter
The name of the subinterpreter under which we’re running.(Read-Only)

main server
A server object for the main server.(Read-Only)

4.5.3 Table Object (mp table)

classtable ([mapping-or-sequence])
Returns a new empty object of typemp table . See Section 4.5.3 for description of the table object. The
mapping-or-sequencewill be used to provide initial values for the table.

The table object is a wrapper around the Apache APR table. The table object behaves very much like a dictionary
(including the Python 2.2 features such as support of thein operator, etc.), with the following differences:

•Both keys and values must be strings.

32 Chapter 4. Python API

•Key lookups are case-insensitive.

•Duplicate keys are allowed (seeadd() below). When there is more than one value for a key, a subscript
operation returns a list.

Much of the information that Apache uses is stored in tables. For example,req.headers in and
req.headers out .

All the tables that modpython provides inside the request object are actual mappings to the Apache structures,
so changing the Python table also changes the underlying Apache table.

In addition to normal dictionary-like behavior, the table object also has the following method:

add (key, val)
add() allows for creating duplicate keys, which is useful when multiple headers, such asSet-Cookie:
are required.

New in version 3.0.

4.5.4 Request Object

The request object is a Python mapping to the Apacherequest rec structure. When a handler is invoked, it is
always passed a single argument - the request object.

You can dynamically assign attributes to it as a way to communicate between handlers.

Request Methods

add common vars ()
Calls the Apacheap add common vars() function. After a call to this method,req.subprocess env
will contain a lot of CGI information.

add handler (htype, handler[, dir])
Allows dynamic handler registration.htypeis a string containing the name of any of the apache request (but not
filter or connection) handler directives, e.g. ‘PythonHandler ’. handleris a string containing the name of the
module and the handler function, or the callable object itself. Optionaldir is a string containing the name of the
directory to be added to the module search path when looking for the handler. If no directory is specified, then
the directory to search in is inherited from the handler which is making the registration,

A handler added this way only persists throughout the life of the request. It is possible to register more handlers
while inside the handler of the same type. One has to be careful as to not to create an infinite loop this way.

Dynamic handler registration is a useful technique that allows the code to dynamically decide what will happen
next. A typical example might be aPythonAuthenHandler that will assign differentPythonHandlers
based on the authorization level, something like:

if manager:
req.add_handler("PythonHandler", "menu::admin")

else:
req.add_handler("PythonHandler", "menu::basic")

Note: If you pass this function an invalid handler, an exception will be generated at the time an attempt is made
to find the handler.

add input filter (filter name)
Adds the named filter into the input filter chain for the current request. The filter should be added before the
first attempt to read any data from the request.

4.5. apache – Access to Apache Internals. 33

add output filter (filter name)
Adds the named filter into the output filter chain for the current request. The filter should be added before the
first attempt to write any data for the response.

Provided that all data written is being buffered and not flushed, this could be used to add the ”CON-
TENT LENGTH” filter into the chain of output filters. The purpose of the ”CONTENTLENGTH” filter
is to add aContent-Length: header to the response.

req.add_output_filter("CONTENT_LENGTH")
req.write("content",0)

allow methods (methods[, reset])
Adds methods to thereq.allowed methods list. This list will be passed inAllowed: header if
HTTP METHODNOT ALLOWEDor HTTP NOT IMPLEMENTEDis returned to the client. Note that Apache
doesn’t do anything to restrict the methods, this list is only used to construct the header. The actual method-
restricting logic has to be provided in the handler code.

methodsis a sequence of strings. Ifresetis 1, then the list of methods is first cleared.

auth name()
Returns AuthName setting.

auth type ()
Returns AuthType setting.

construct url (uri)
This function returns a fully qualified URI string from the path specified by uri, using the information stored in
the request to determine the scheme, server name and port. The port number is not included in the string if it is
the same as the default port 80.

For example, imagine that the current request is directed to the virtual server www.modpython.org at port 80.
Then supplying ‘/index.html ’ will yield the string ‘http://www.modpython.org/index.html ’.

discard request body ()
Tests for and reads any message body in the request, simply discarding whatever it receives.

document root ()
Returns DocumentRoot setting.

get basic auth pw()
Returns a string containing the password when Basic authentication is used.

get config ()
Returns a reference to the table object containing the modpython configuration in effect for this request except
for Python*Handler andPythonOption (The latter can be obtained viareq.get options() . The
table has directives as keys, and their values, if any, as values.

get remote host ([type, str is ip])
This method is used to determine remote client’s DNS name or IP number. The first call to this function may
entail a DNS look up, but subsequent calls will use the cached result from the first call.

The optionaltypeargument can specify the following:

•apache.REMOTE HOST Look up the DNS name. Return None if Apache directive
HostNameLookups is off or the hostname cannot be determined.

•apache.REMOTE NAME(Default) Return the DNS name if possible, or the IP (as a string in dotted
decimal notation) otherwise.

•apache.REMOTE NOLOOKUPDon’t perform a DNS lookup, return an IP. Note: if a lookup was per-
formed prior to this call, then the cached host name is returned.

34 Chapter 4. Python API

•apache.REMOTE DOUBLEREVForce a double-reverse lookup. On failure, return None.

If str is ip is None or unspecified, then the return value is a string representing the DNS name or IP address.

If the optionalstr is ip argument is notNone, then the return value is an(address, str is ip) tuple,
wherestr is ip is non-zero ifaddress is an IP address string.

On failure,None is returned.

get options ()
Returns a reference to the table object containing the options set by thePythonOption directives.

internal redirect (new uri)
Internally redirects the request to thenew uri. new uri must be a string.

The httpd server handles internal redirection by creating a new request object and processing all request phases.
Within an internal redirect,req.prev will contain a reference to a request object from which it was redirected.

is https ()
Returns non-zero if the connection is using SSL/TLS. Will always return zero if the modssl Apache module is
not loaded.

You can use this method during any request phase, unlike looking for theHTTPS variable in the
subprocess env member dictionary. This makes it possible to write an authentication or access handler
that makes decisions based upon whether SSL is being used.

Note that this method will not determine the quality of the encryption being used. For that you should call the
ssl var lookup method to get one of theSSL CIPHER* variables.

log error (message[, level])
An interface to the Apacheap log rerror function.messageis a string with the error message,levelis one
of the following flags constants:

APLOG_EMERG
APLOG_ALERT
APLOG_CRIT
APLOG_ERR
APLOG_WARNING
APLOG_NOTICE
APLOG_INFO
APLOG_DEBUG
APLOG_NOERRNO

If you need to write to log and do not have a reference to a request object, use theapache.log error
function.

meets conditions ()
Calls the Apacheap meets conditions() function which returns a status code. Ifstatusis apache.OK ,
generate the content of the response normally. If not, simply returnstatus. Note thatmtime(and possibly the
ETag header) should be set as appropriate prior to calling this function. The same goes forreq.status if the
status differs fromapache.OK .

Example:

4.5. apache – Access to Apache Internals. 35

...
r.headers_out[’ETag’] = ’"1130794f-3774-4584-a4ea-0ab19e684268"’
r.headers_out[’Expires’] = ’Mon, 18 Apr 2005 17:30:00 GMT’
r.update_mtime(1000000000)
r.set_last_modified()

status = r.meets_conditions()
if status != apache.OK:

return status

... do expensive generation of the response content ...

requires ()
Returns a tuple of strings of arguments torequire directive.

For example, with the following apache configuration:

AuthType Basic
require user joe
require valid-user

requires() would return(’user joe’, ’valid-user’) .

read ([len])
Reads at mostlen bytes directly from the client, returning a string with the data read. If thelen argument is
negative or omitted, reads all data given by the client.

This function is affected by theTimeout Apache configuration directive. The read will be aborted and an
IOError raised if theTimeout is reached while reading client data.

This function relies on the client providing theContent-length header. Absence of the
Content-length header will be treated as ifContent-length: 0 was supplied.

IncorrectContent-length may cause the function to try to read more data than available, which will make
the function block until aTimeout is reached.

readline ([len])
Like read() but reads until end of line.

Note: In accordance with the HTTP specification, most clients will be terminating lines with ‘\r\n ’ rather than
simply ‘\n ’.

readlines ([sizehint])
Reads all lines usingreadline and returns a list of the lines read. If the optionalsizehintparameter is given
in, the method will read at leastsizehintbytes of data, up to the completion of the line in which thesizehint
bytes limit is reached.

register cleanup (callable[, data])
Registers a cleanup. Argumentcallablecan be any callable object, the optional argumentdatacan be any object
(default isNone). At the very end of the request, just before the actual request record is destroyed by Apache,
callablewill be called with one argument,data.

It is OK to pass the request object as data, but keep in mind that when the cleanup is executed, the request
processing is already complete, so doing things like writing to the client is completely pointless.

If errors are encountered during cleanup processing, they should be in error log, but otherwise will not affect
request processing in any way, which makes cleanup bugs sometimes hard to spot.

If the server is shut down before the cleanup had a chance to run, it’s possible that it will not be executed.

register input filter (filter name, filter[, dir])
Allows dynamic registration of modpython input filters.filter nameis a string which would then subsequently

36 Chapter 4. Python API

be used to identify the filter.filter is a string containing the name of the module and the filter function or the
callable object itself. Optionaldir is a string containing the name of the directory to be added to the module
search when looking for the module.

The registration of the filter this way only persists for the life of the request. To actually add the filter into the
chain of input filters for the current requestreq.add input filter() would be used.

register output filter (filter name, filter[, dir])
Allows dynamic registration of modpython output filters.filter nameis a string which would then subse-
quently be used to identify the filter.filter is a string containing the name of the module and the filter function or
the callable object itself. Optionaldir is a string containing the name of the directory to be added to the module
search path when looking for the handler.

The registration of the filter this way only persists for the life of the request. To actually add the filter into the
chain of output filters for the current requestreq.add output filter() would be used.

sendfile (path[, offset, len])
Sendslen bytes of filepathdirectly to the client, starting at offsetoffsetusing the server’s internal API.offset
defaults to 0, andlendefaults to -1 (send the entire file).

Returns the number of bytes sent, or raises an IOError exception on failure.

This function provides the most efficient way to send a file to the client.

set etag ()
Sets the outgoing ‘ETag’ header.

set last modified ()
Sets the outgoing ‘Last-Modified ’ header based on value ofmtime attribute.

ssl var lookup (var name)
Looks up the value of the named SSL variable. This method queries the modssl Apache module directly, and
may therefore be used in early request phases (unlike using thesubprocess env member.

If the mod ssl Apache module is not loaded or the variable is not found thenNone is returned.

If you just want to know if a SSL or TLS connection is being used, you may consider calling theis https
method instead.

It is unfortunately not possible to get a list of all available variables with the current modssl implementation,
so you must know the name of the variable you want. Some of the potentially useful ssl variables are listed
below. For a complete list of variables and a description of their values see the modssl documentation.

SSL_CIPHER
SSL_CLIENT_CERT
SSL_CLIENT_VERIFY
SSL_PROTOCOL
SSL_SESSION_ID

Note: Not all SSL variables are defined or have useful values in every request phase. Also use caution when
relying on these values for security purposes, as SSL or TLS protocol parameters can often be renegotiated at
any time during a request.

update mtime (dependencymtime)
If dependencymtimeis later than the value in themtime attribute, sets the attribute to the new value.

write (string[, flush=1])
Writesstringdirectly to the client, then flushes the buffer, unless flush is 0.

flush ()
Flushes the output buffer.

4.5. apache – Access to Apache Internals. 37

set content length (len)
Sets the value ofreq.clength and the ‘Content-Length ’ header to len. Note that after the headers have
been sent out (which happens just before the first byte of the body is written, i.e. first call toreq.write()),
calling the method is meaningless.

Request Members

connection
A connection object associated with this request. See Connection Object below for details.(Read-Only)

server
A server object associate with this request. See Server Object below for details.(Read-Only)

next
If this is an internal redirect, the request object we redirect to.(Read-Only)

prev
If this is an internal redirect, the request object we redirect from.(Read-Only)

main
If this is a sub-request, pointer to the main request.(Read-Only)

the request
String containing the first line of the request.(Read-Only)

assbackwards
Indicates an HTTP/0.9 “simple” request. This means that the response will contain no headers, only the body.
Although this exists for backwards compatibility with obsolescent browsers, some people have figred out that
setting assbackwards to 1 can be a useful technique when including part of the response from an internal redirect
to avoid headers being sent.

proxyreq
A proxy request: one ofapache.PROXYREQ * values.

header only
A boolean value indicating HEAD request, as opposed to GET.(Read-Only)

protocol
Protocol, as given by the client, or ‘HTTP/0.9 ’. Same as CGI SERVERPROTOCOL.(Read-Only)

proto num
Integer. Number version of protocol; 1.1 = 1001(Read-Only)

hostname
String. Host, as set by full URI or Host: header.(Read-Only)

request time
A long integer. When request started.(Read-Only)

status line
Status line. E.g. ‘200 OK’. (Read-Only)

status
Status. One ofapache.HTTP * values.

method
A string containing the method - ’GET’, ’HEAD’, ’POST’, etc. Same as CGI REQUESTMETHOD. (Read-
Only)

method number
Integer containing the method number.(Read-Only)

38 Chapter 4. Python API

allowed
Integer. A bitvector of the allowed methods. Used to construct the Allowed: header when responding with
HTTP METHODNOT ALLOWEDor HTTP NOT IMPLEMENTED. This field is for Apache’s internal use, to
set the Allowed: methods usereq.allow methods() method, described in section 4.5.4.(Read-Only)

allowed xmethods
Tuple. Allowed extension methods.(Read-Only)

allowed methods
Tuple. List of allowed methods. Used in relation withMETHODNOT ALLOWED. This member can be modified
via req.allow methods() described in section 4.5.4.(Read-Only)

sent bodyct
Integer. Byte count in stream is for body. (?)(Read-Only)

bytes sent
Long integer. Number of bytes sent.(Read-Only)

mtime
Long integer. Time the resource was last modified.(Read-Only)

chunked
Boolean value indicating when sending chunked transfer-coding.(Read-Only)

range
String. TheRange: header.(Read-Only)

clength
Long integer. The “real” content length.(Read-Only)

remaining
Long integer. Bytes left to read. (Only makes sense inside a read operation.)(Read-Only)

read length
Long integer. Number of bytes read.(Read-Only)

read body
Integer. How the request body should be read.(Read-Only)

read chunked
Boolean. Read chunked transfer coding.(Read-Only)

expecting 100
Boolean. Is client waiting for a 100 (HTTP CONTINUE) response.(Read-Only)

headers in
A table object containing headers sent by the client.

headers out
A table object representing the headers to be sent to the client.

err headers out
These headers get send with the error response, instead of headersout.

subprocess env
A table object containing environment information typically usable for CGI. You may have to call
req.add common vars() first to fill in the information you need.

notes
A table object that could be used to store miscellaneous general purpose info that lives for as long as the
request lives. If you need to pass data between handlers, it’s better to simply add members to the request object
than to usenotes .

phase

4.5. apache – Access to Apache Internals. 39

The phase currently being being processed, e.g. ‘PythonHandler ’. (Read-Only)

interpreter
The name of the subinterpreter under which we’re running.(Read-Only)

content type
String. The content type. Modpython maintains an internal flag (req. content type set) to keep track
of whethercontent type was set manually from within Python. The publisher handler uses this flag in the
following way: whencontent type isn’t explicitly set, it attempts to guess the content type by examining
the first few bytes of the output.

content languages
Tuple. List of strings representing the content languages.

handler
The symbolic name of the content handler (as in module, not modpython handler) that will service the request
during the response phase. When the SetHandler/AddHandler directives are used to trigger modpython, this
will be set to ‘mod python ’ by mod mime. A mod python handler executing prior to the response phase
may also set this to ‘mod python ’ along with calling ‘req.add handler() ’ to register a modpython
handler for the response phase.

def typehandler(req):
if os.path.splitext(req.filename)[1] == ".py":

req.handler = "mod_python"
req.add_handler("PythonHandler", "mod_python.publisher")
return apache.OK

return apache.DECLINED

content encoding
String. Content encoding.(Read-Only)

vlist validator
Integer. Variant list validator (if negotiated).(Read-Only)

user
If an authentication check is made, this will hold the user name. Same as CGI REMOTEUSER.

Note: req.get basic auth pw() must be called prior to using this value.

ap auth type
Authentication type. Same as CGI AUTHTYPE.

no cache
Boolean. This response cannot be cached.

no local copy
Boolean. No local copy exists.

unparsed uri
The URI without any parsing performed.(Read-Only)

uri
The path portion of the URI.

filename
String. File name being requested.

canonical filename
String. The true filename (req.filename is canonicalized if they don’t match).

path info

40 Chapter 4. Python API

String. What follows after the file name, but is before query args, if anything. Same as CGI PATHINFO.

args
String. Same as CGI QUERYARGS.

finfo
A file information object with typemp finfo , analogous to the result of the POSIX stat function, describing
the file pointed to by the URI. The object provides the attributesfname , filetype , valid , protection ,
user , group , size , inode , device , nlink , atime , mtime , ctime andname.

The attribute may be assigned to using the result ofapache.stat() . For example:

if req.finfo.filetype == apache.APR_DIR:
req.filename = posixpath.join(req.filename, ’index.html’)
req.finfo = apache.stat(req.filename, apache.APR_FINFO_MIN)

For backward compatability, the object can also be accessed as if it were a tuple. Theapache module defines
a set ofFINFO * constants that should be used to access elements of this tuple.

user = req.finfo[apache.FINFO_USER]

parsed uri
Tuple. The URI broken down into pieces.(scheme, hostinfo, user, password, hostname,
port, path, query, fragment) . Theapache module defines a set ofURI * constants that should
be used to access elements of this tuple. Example:

fname = req.parsed_uri[apache.URI_PATH]

(Read-Only)

used path info
Flag to accept or reject pathinfo on current request.

eos sent
Boolean. EOS bucket sent.(Read-Only)

4.5.5 Connection Object (mp conn)

The connection object is a Python mapping to the Apache connrec structure.

Connection Methods

log error (message[, level])
An interface to the Apacheap log cerror function.messageis a string with the error message,levelis one
of the following flags constants:

4.5. apache – Access to Apache Internals. 41

APLOG_EMERG
APLOG_ALERT
APLOG_CRIT
APLOG_ERR
APLOG_WARNING
APLOG_NOTICE
APLOG_INFO
APLOG_DEBUG
APLOG_NOERRNO

If you need to write to log and do not have a reference to a connection or request object, use the
apache.log error function.

read ([length])
Reads at mostlengthbytes from the client. The read blocks indefinitely until there is at least one byte to read. If
length is -1, keep reading until the socket is closed from the other end (This is known asEXHAUSTIVEmode
in the http server code).

This method should only be used insideConnection Handlers.

Note: The behaviour of this method has changed since version 3.0.3. In 3.0.3 and prior, this method would
block until lengthbytes was read.

readline ([length])
Reads a line from the connection or up tolengthbytes.

This method should only be used insideConnection Handlers.

write (string)
Writesstring to the client.

This method should only be used insideConnection Handlers.

Connection Members

base server
A server object for the physical vhost that this connection came in through.(Read-Only)

local addr
The (address, port) tuple for the server.(Read-Only)

remote addr
The (address, port) tuple for the client.(Read-Only)

remote ip
String with the IP of the client. Same as CGI REMOTEADDR. (Read-Only)

remote host
String. The DNS name of the remote client. None if DNS has not been checked,"" (empty string) if no name
found. Same as CGI REMOTEHOST.(Read-Only)

remote logname
Remote name if using RFC1413 (ident). Same as CGI REMOTEIDENT. (Read-Only)

aborted
Boolean. True is the connection is aborted.(Read-Only)

keepalive
Integer. 1 means the connection will be kept for the next request, 0 means “undecided”, -1 means “fatal error”.
(Read-Only)

42 Chapter 4. Python API

double reverse
Integer. 1 means double reverse DNS lookup has been performed, 0 means not yet, -1 means yes and it failed.
(Read-Only)

keepalives
The number of times this connection has been used. (?)(Read-Only)

local ip
String with the IP of the server.(Read-Only)

local host
DNS name of the server.(Read-Only)

id
Long. A unique connection id.(Read-Only)

notes
A table object containing miscellaneous general purpose info that lives for as long as the connection lives.

4.5.6 Filter Object (mp filter)

A filter object is passed to modpython input and output filters. It is used to obtain filter information, as well as get
and pass information to adjacent filters in the filter stack.

Filter Methods

pass on()
Passes all data through the filter without any processing.

read ([length])
Reads at mostlen bytes from the next filter, returning a string with the data read or None if End Of Stream
(EOS) has been reached. A filtermustbe closed once the EOS has been encountered.

If the lenargument is negative or omitted, reads all data currently available.

readline ([length])
Reads a line from the next filter or up tolengthbytes.

write (string)
Writesstring to the next filter.

flush ()
Flushes the output by sending a FLUSH bucket.

close ()
Closes the filter and sends an EOS bucket. Any further IO operations on this filter will throw an exception.

disable ()
Tells mod python to ignore the provided handler and just pass the data on. Used internally by modpython to
print traceback from exceptions encountered in filter handlers to avoid an infinite loop.

Filter Members

closed
A boolean value indicating whether a filter is closed.(Read-Only)

name
String. The name under which this filter is registered.(Read-Only)

4.5. apache – Access to Apache Internals. 43

req
A reference to the request object.(Read-Only)

is input
Boolean. True if this is an input filter.(Read-Only)

handler
String. The name of the Python handler for this filter as specified in the configuration.(Read-Only)

4.5.7 Server Object (mp server)

The request object is a Python mapping to the Apacherequest rec structure. The server structure describes the
server (possibly virtual server) serving the request.

Server Methods

get config ()
Similar toreq.get config() , but returns a table object holding only the modpython configuration defined
at global scope within the Apache configuration. That is, outside of the context of any VirtualHost, Location,
Directory or Files directives.

get options ()
Similar to req.get options() , but returns a table object holding only the modpython options defined
at global scope within the Apache configuration. That is, outside of the context of any VirtualHost, Location,
Directory or Files directives.

log error (message[, level])
An interface to the Apacheap log error function. messageis a string with the error message,level is one
of the following flags constants:

APLOG_EMERG
APLOG_ALERT
APLOG_CRIT
APLOG_ERR
APLOG_WARNING
APLOG_NOTICE
APLOG_INFO
APLOG_DEBUG
APLOG_NOERRNO

If you need to write to log and do not have a reference to a server or request object, use the
apache.log error function.

register cleanup (request, callable[, data])
Registers a cleanup. Very similar toreq.register cleanup() , except this cleanup will be executed at
child termination time. This function requires the request object be supplied to infer the interpreter name. If
you don’t have any request object at hand, then you must use theapache.register cleanup variant.
Warning: do not pass directly or indirectly a request object in the data parameter. Since the callable will be
called at server shutdown time, the request object won’t exist anymore and any manipulation of it in the callable
will give undefined behaviour.

Server Members

defn name
String. The name of the configuration file where the server definition was found.(Read-Only)

44 Chapter 4. Python API

defn line number
Integer. Line number in the config file where the server definition is found.(Read-Only)

server admin
Value of theServerAdmin directive.(Read-Only)

server hostname
Value of theServerName directive. Same as CGI SERVERNAME.(Read-Only)

names
Tuple. List of normal server names specified in theServerAlias directive. This list does not include wild-
carded names, which are listed separately inwild names. (Read-Only)

wild names
Tuple. List of wildcarded server names specified in theServerAlias directive.(Read-Only)

port
Integer. TCP/IP port number. Same as CGI SERVERPORT.This member appears to be 0 on Apache 2.0, look
at req.connection.localaddr instead (Read-Only)

error fname
The name of the error log file for this server, if any.(Read-Only)

loglevel
Integer. Logging level.(Read-Only)

is virtual
Boolean. True if this is a virtual server.(Read-Only)

timeout
Integer. Value of theTimeout directive.(Read-Only)

keep alive timeout
Integer. Keepalive timeout.(Read-Only)

keep alive max
Maximum number of requests per keepalive.(Read-Only)

keep alive
Use persistent connections?(Read-Only)

path
String. Path forServerPath (Read-Only)

pathlen
Integer. Path length.(Read-Only)

limit req line
Integer. Limit on size of the HTTP request line.(Read-Only)

limit req fieldsize
Integer. Limit on size of any request header field.(Read-Only)

limit req fields
Integer. Limit on number of request header fields.(Read-Only)

4.6 util – Miscellaneous Utilities

Theutil module provides a number of utilities handy to a web application developer similar to those in the standard
library cgi module. The implementations in theutil module are much more efficient because they call directly into
Apache API’s as opposed to using CGI which relies on the environment to pass information.

4.6. util – Miscellaneous Utilities 45

The recommended way of using this module is:

from mod_python import util

See Also:

Common Gateway Interface RFC Project Page
(http://CGI-Spec.Golux.Com/)

for detailed information on the CGI specification

4.6.1 FieldStorage class

Access to form data is provided via theFieldStorage class. This class is similar to the standard library module
cgi FieldStorage .

classFieldStorage (req[, keep blank values, strict parsing, file callback, field callback])
This class provides uniform access to HTML form data submitted by the client.req is an instance of the
mod python request object.

The optional argumentkeep blank valuesis a flag indicating whether blank values in URL encoded form data
should be treated as blank strings. The default is false, which means that blank values are ignored as if they
were not included.

The optional argumentstrict parsingis not yet implemented.

The optional argumentfile callbackallows the application to override both file creation/deletion semantics and
location. See 4.6.2 “FieldStorage Examples” for additional information.New in version 3.2

The optional argumentfield callback allows the application to override both the creation/deletion semantics
and behaviour.New in version 3.2

During initialization,FieldStorage class reads all of the data provided by the client. Since all data provided
by the client is consumed at this point, there should be no more than oneFieldStorage class instanti-
ated per single request, nor should you make any attempts to read client data before or after instantiating a
FieldStorage . A suggested strategy for dealing with this is that any handler should first check for the exis-
tance of aform attribute within the request object. If this exists, it should be taken to be an existing instance
of theFieldStorage class and that should be used. If the attribute does not exist and needs to be created, it
should be cached as theform attribute of the request object so later handler code can use it.

When theFieldStorage class instance is created, the data read from the client is then parsed into separate
fields and packaged inField objects, one per field. For HTML form inputs of typefile , a temporary file is
created that can later be accessed via thefile attribute of aField object.

The FieldStorage class has a mapping object interface, i.e. it can be treated like a dictionary in most
instances, but is not strictly compatible as is it missing some methods provided by dictionaries and some methods
don’t behave entirely like their counterparts, especially when there is more than one value associated with a form
field. When used as a mapping, the keys are form input names, and the returned dictionary value can be:

•An instance ofStringField , containing the form input value. This is only when there is a single value
corresponding to the input name.StringField is a subclass ofstr which provides the additional
value attribute for compatibility with standard librarycgi module.

•An instance of aField class, if the input is a file upload.

•A list of StringField and/or Field objects. This is when multiple values exist, such as for a
<select> HTML form element.

Note: Unlike the standard librarycgi moduleFieldStorage class, aField object is returnedonly when
it is a file upload. In all other cases the return is an instance ofStringField . This means that you do not
need to use the.value attribute to access values of fields in most cases.

46 Chapter 4. Python API

In addition to standard mapping object methods,FieldStorage objects have the following attributes:

list
This is a list ofField objects, one for each input. Multiple inputs with the same name will have multiple
elements in this list.

FieldStorage methods:

add field (name, value)
Adds an additional form field withnameandvalue. If a form field already exists withname, thevaluewill
be added to the list of existing values for the form field. This method should be used for adding additional
fields in preference to adding new fields direct to the list of fields.

If the value associated with a field should be replaced when it already exists, rather than an additional value
being associated with the field, the dictionary like subscript operator should be used to set the value, or the
existing field deleted altogether first using thedel operator.

clear ()
Removes all form fields. Individual form fields can be deleted using thedel operator.

get (name, default)
If there is only one value associated with form fieldname, that single value will be returned. If there are
multiple values, a list is returned holding all values. If no such form field or value exists then the method
returns the value specified by the parameterdefault. A subscript operator is also available which yields the
same result except that an exception will be raised where the form fieldnamedoes not exist.

getfirst (name[, default])
Always returns only one value associated with form fieldname. If no such form field or value exists then
the method returns the value specified by the optional parameterdefault. This parameter defaults toNone
if not specified.

getlist (name)
This method always returns a list of values associated with form fieldname. The method returns an empty
list if no such form field or value exists forname. It returns a list consisting of one item if only one such
value exists.

has key (name)
ReturnsTrue if nameis a valid form field. Thein operator is also supported and will call this method.

items ()
Returns a list consisting of tuples for each combination of form field name and value.

keys ()
This method returns the names of the form fields. Thelen operator is also supported and will return the
number of names which would be returned by this method.

4.6.2 FieldStorage Examples

The following examples demonstrate how to use thefile callbackparameter of theFieldStorage constructor to
control file object creation. TheStorage classes created in both examples derive from FileType, thereby providing
extended file functionality.

These examples are provided for demonstration purposes only. The issue of temporary file location and security must
be considered when providing such overrides with modpython in production use.

Simple file control using class constructorThis example uses theFieldStorage class constructor to create the
file object, allowing simple control. It is not advisable to add class variables to this if serving multiple sites from
apache. In that case use the factory method instead.

4.6. util – Miscellaneous Utilities 47

class Storage(file):

def __init__(self, advisory_filename):
self.advisory_filename = advisory_filename
self.delete_on_close = True
self.already_deleted = False
self.real_filename = ’/someTempDir/thingy-unique-thingy’
super(Storage, self).__init__(self.real_filename, ’w+b’)

def close(self):
if self.already_deleted:

return
super(Storage, self).close()
if self.delete_on_close:

self.already_deleted = True
os.remove(self.real_filename)

request_data = util.FieldStorage(request, keep_blank_values=True, file_callback=Storage)

Advanced file control using object factory Using a object factory can provide greater control over the constructor
parameters.

import os

class Storage(file):

def __init__(self, directory, advisory_filename):
self.advisory_filename = advisory_filename
self.delete_on_close = True
self.already_deleted = False
self.real_filename = directory + ’/thingy-unique-thingy’
super(Storage, self).__init__(self.real_filename, ’w+b’)

def close(self):
if self.already_deleted:

return
super(Storage, self).close()
if self.delete_on_close:

self.already_deleted = True
os.remove(self.real_filename)

class StorageFactory:

def __init__(self, directory):
self.dir = directory

def create(self, advisory_filename):
return Storage(self.dir, advisory_filename)

file_factory = StorageFactory(someDirectory)
[...sometime later...]
request_data = util.FieldStorage(request, keep_blank_values=True,

file_callback=file_factory.create)

48 Chapter 4. Python API

4.6.3 Field class

classField ()
This class is used internally byFieldStorage and is not meant to be instantiated by the user. Each instance
of aField class represents an HTML Form input.

Field instances have the following attributes:

name
The input name.

value
The input value. This attribute can be used to read data from a file upload as well, but one has to exercise
caution when dealing with large files since when accessed viavalue , the whole file is read into memory.

file
This is a file-like object. For file uploads it points to aTemporaryFile instance. (For more information
see the TemporaryFile class in the standard pythontempfilemodule).

For simple values, it is aStringIO object, so you can read simple string values via this attribute instead
of using thevalue attribute as well.

filename
The name of the file as provided by the client.

type
The content-type for this input as provided by the client.

type options
This is what follows the actual content type in thecontent-type header provided by the client, if
anything. This is a dictionary.

disposition
The value of the first part of thecontent-disposition header.

disposition options
The second part (if any) of thecontent-disposition header in the form of a dictionary.

See Also:

RFC 1867, “Form-based File Upload in HTML”
for a description of form-based file uploads

4.6.4 Other functions

parse qs (qs[, keep blank values, strict parsing])
This function is functionally equivalent to the standard librarycgi parse qs , except that it is written in C
and is much faster.

Parse a query string given as a string argument (data of typeapplication/x-www-form-urlencoded). Data are
returned as a dictionary. The dictionary keys are the unique query variable names and the values are lists of
values for each name.

The optional argumentkeep blank valuesis a flag indicating whether blank values in URL encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The
default false value indicates that blank values are to be ignored and treated as if they were not included.

Note: Thestrict parsingargument is not yet implemented.

parse qsl (qs[, keep blank values, strict parsing])
This function is functionally equivalent to the standard librarycgi parse qsl , except that it is written in C
and is much faster.

Parse a query string given as a string argument (data of typeapplication/x-www-form-urlencoded). Data are
returned as a list of name, value pairs.

4.6. util – Miscellaneous Utilities 49

The optional argumentkeep blank valuesis a flag indicating whether blank values in URL encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The
default false value indicates that blank values are to be ignored and treated as if they were not included.

Note: Thestrict parsingargument is not yet implemented.

redirect (req, location[, permanent=0, text=None])
This is a convenience function to redirect the browser to another location. Whenpermanentis true,
MOVEDPERMANENTLYstatus is sent to the client, otherwise it isMOVEDTEMPORARILY. A short text is
sent to the browser informing that the document has moved (for those rare browsers that do not support redirec-
tion); this text can be overridden by supplying atextstring.

If this function is called after the headers have already been sent, anIOError is raised.

This function raisesapache.SERVER RETURNexception with a value ofapache.DONE to ensuring that
any later phases or stacked handlers do not run. If you do not want this, you can wrap the call toredirect in
a try/except block catching theapache.SERVER RETURN.

4.7 Cookie – HTTP State Management

TheCookie module provides convenient ways for creating, parsing, sending and receiving HTTP Cookies, as defined
in the specification published by Netscape.

Note: Even though there are official IETF RFC’s describing HTTP State Management Mechanism using cookies,
the de facto standard supported by most browsers is the original Netscape specification. Furthermore, true compliance
with IETF standards is actually incompatible with many popular browsers, even those that claim to be RFC-compliant.
Therefore, this module supports the current common practice, and is not fully RFC compliant.

More specifically, the biggest difference between Netscape and RFC cookies is that RFC cookies are sent from the
browser to the server along with their attributes (like Path or Domain). TheCookie module ignore those incoming
attributes, so all incoming cookies end up as Netscape-style cookies, without any of their attributes defined.

See Also:

Persistent Client State - HTTP Cookies
(http://wp.netscape.com/newsref/std/cookie spec.html)

for the original Netscape specification.

RFC 2109, “HTTP State Management Mechanism”
for the first RFC on Cookies.

RFC 2964, “Use of HTTP State Management”
for guidelines on using Cookies.

RFC 2965, “HTTP State Management Mechanism”
for the latest IETF standard.

HTTP Cookies: Standards, Privacy, and Politics
(http://arxiv.org/abs/cs.SE/0105018)

by David M. Kristol for an excellent overview of the issues surrounding standardization of Cookies.

4.7.1 Classes

classCookie (name, value[, attributes])
This class is used to construct a single cookie namednameand havingvalueas the value. Additionally, any of
the attributes defined in the Netscape specification and RFC2109 can by supplied as keyword arguments.

The attributes of the class represent cookie attributes, and their string representations become part of the string
representation of the cookie. TheCookie class restricts attribute names to only valid values, specifically,

50 Chapter 4. Python API

only the following attributes are allowed:name, value, version, path, domain, secure,
comment, expires, max age, commentURL, discard, port, httponly, data .

The data attribute is a general-purpose dictionary that can be used for storing arbitrary values, when
necessary (This is useful when subclassingCookie).

The expires attribute is a property whose value is checked upon setting to be in format ‘Wdy,
DD-Mon-YYYY HH:MM:SS GMT’ (as dictated per Netscape cookie specification), or a numeric value rep-
resenting time in seconds since beginning of epoch (which will be automatically correctly converted to GMT
time string). An invalidexpires value will raiseValueError .

When converted to a string, aCookie will be in correct format usable as value in a ‘Cookie ’ or
‘Set-Cookie ’ header.

Note: Unlike the Python Standard Library Cookie classes, this class represents a single cookie (referred to as
Morsel in Python Standard Library).

parse (string)
This is a class method that can be used to create aCookie instance from a cookie stringstring as passed
in a header value. During parsing, attribute names are converted to lower case.

Because this is a class method, it must be called explicitly specifying the class.

This method returns a dictionary ofCookie instances, not a singleCookie instance.

Here is an example of getting a singleCookie instance:

mycookies = Cookie.parse("spam=eggs; expires=Sat, 14-Jun-2003 02:42:36 GMT")
spamcookie = mycookies["spam"]

Note: Because this method uses a dictionary, it is not possible to have duplicate cookies. If you would like
to have more than one value in a single cookie, consider using aMarshalCookie .

classSignedCookie (name, value, secret[, attributes])
This is a subclass ofCookie . This class creates cookies whose name and value are automatically signed using
HMAC (md5) with a provided secretsecret, which must be a non-empty string.

parse (string, secret)
This method acts the same way asCookie.parse() , but also verifies that the cookie is correctly signed.
If the signature cannot be verified, the object returned will be of classCookie .

Note: Always check the types of objects returned bySignedCookie.parse() . If it is an instance of
Cookie (as opposed toSignedCookie), the signature verification has failed:

assume spam is supposed to be a signed cookie
if type(spam) is not Cookie.SignedCookie:

do something that indicates cookie isn’t signed correctly

classMarshalCookie (name, value, secret[, attributes])
This is a subclass ofSignedCookie . It allows for valueto be any marshallable objects. Core Python types
such as string, integer, list, etc. are all marshallable object. For a complete list seemarshalmodule documenta-
tion.

When parsing, the signature is checked first, so incorrectly signed cookies will not be unmarshalled.

4.7.2 Functions

add cookie (req, cookie[, value, attributes])
This is a convenience function for setting a cookie in request headers.req is a mod pythonRequest object. If
cookieis an instance ofCookie (or subclass thereof), then the cookie is set, otherwise,cookiemust be a string,

4.7. Cookie – HTTP State Management 51

in which case aCookie is constructed usingcookieas name,valueas the value, along with any validCookie
attributes specified as keyword arguments.

This function will also set ‘Cache-Control: no-cache="set-cookie" ’ header to inform caches
that the cookie value should not be cached.

Here is one way to use this function:

c = Cookie.Cookie(’spam’, ’eggs’, expires=time.time()+300)
Cookie.add_cookie(req, c)

Here is another:

Cookie.add_cookie(req, ’spam’, ’eggs’, expires=time.time()+300)

get cookies (req [, Class, data])
This is a convenience function for retrieving cookies from incoming headers.req is a mod pythonRequest
object. Class is a class whoseparse() method will be used to parse the cookies, it defaults toCookie .
Data can be any number of keyword arguments which, will be passed toparse() (This is useful for
signedCookie andMarshalCookie which requiresecret as an additional argument toparse). The
set of cookies found is returned as a dictionary.

get cookie (req, name[, Class, data])
This is a convenience function for retrieving a single named cookie from incoming headers.req is a mod python
Request object.nameis the name of the cookie.Classis a class whoseparse() method will be used to parse
the cookies, it defaults toCookie . Data can be any number of keyword arguments which, will be passed to
parse() (This is useful forsignedCookie andMarshalCookie which requiresecret as an additional
argument toparse). The cookie if found is returned, otherwiseNone is returned.

4.7.3 Examples

This example sets a simple cookie which expires in 300 seconds:

from mod_python import Cookie, apache
import time

def handler(req):

cookie = Cookie.Cookie(’eggs’, ’spam’)
cookie.expires = time.time() + 300
Cookie.add_cookie(req, cookie)

req.write(’This response contains a cookie!\n’)
return apache.OK

This example checks for incoming marshal cookie and displays it to the client. If no incoming cookie is present a new
marshal cookie is set. This example uses ‘secret007 ’ as the secret for HMAC signature.

52 Chapter 4. Python API

from mod_python import apache, Cookie

def handler(req):

cookies = Cookie.get_cookies(req, Cookie.MarshalCookie,
secret=’secret007’)

if cookies.has_key(’spam’):
spamcookie = cookies[’spam’]

req.write(’Great, a spam cookie was found: %s\n’ \
% str(spamcookie))

if type(spamcookie) is Cookie.MarshalCookie:
req.write(’Here is what it looks like decoded: %s=%s\n’

% (spamcookie.name, spamcookie.value))
else:

req.write(’WARNING: The cookie found is not a \
MarshalCookie, it may have been tapered with!’)

else:

MarshaCookie allows value to be any marshallable object
value = {’egg_count’: 32, ’color’: ’white’}
Cookie.add_cookie(req, Cookie.MarshalCookie(’spam’, value, \

’secret007’))
req.write(’Spam cookie not found, but we just set one!\n’)

return apache.OK

4.8 Session – Session Management

TheSession module provides objects for maintaining persistent sessions across requests.

The module contains aBaseSession class, which is not meant to be used directly (it provides no means of storing
a session),DbmSession class, which uses a dbm to store sessions, andFileSession class, which uses individual
files to store sessions.

TheBaseSession class also provides session locking, both across processes and threads. For locking it uses APR
global mutexes (a number of them is pre-created at startup) The mutex number is computed by using modulus of the
session idhash() . (Therefore it’s possible that different session id’s will have the same hash, but the only implication
is that those two sessions cannot be locked at the same time resulting in a slight delay.)

4.8.1 Classes

Session (req[, sid, secret, timeout, lock])
Session() takes the same arguments asBaseSession .

This function returns a instance of the default session class. The session class to be used can be spec-
ified using PythonOption modpython.session.sessiontype value, where value is one of DbmSession ,
MemorySession or FileSession . Specifying custom session classes usingPythonOption session
is not yet supported.

If session type option is not found, the function queries the MPM and based on that returns either a new instance
of DbmSession or MemorySession . MemorySession will be used if the MPM is threaded and not

4.8. Session – Session Management 53

forked (such is the case on Windows), or if it threaded, forked, but only one process is allowed (the worker
MPM can be configured to run this way). In all other casesDbmSession is used.

Note that on Windows if you are using multiple Python interpreter instances and you need sessions to be shared
between applications running within the context of the distinct Python interpreter instances, you must specifi-
cally indicate thatDbmSession should be used, asMemorySession will only allow a session to be valid
within the context of the same Python interpreter instance.

Also note that the option namemod python.session.session type only started to be used from
mod python 3.3 onwards. If you need to retain compatability with older versions of modpython, you should
use the now obsoletesession option instead.

classBaseSession (req[, sid, secret, timeout, lock])
This class is meant to be used as a base class for other classes that implement a session storage mechanism.req
is a required reference to a modpython request object.

BaseSession is a subclass ofdict . Data can be stored and retrieved from the session by using it as a
dictionary.

sid is an optional session id; if provided, such a session must already exist, otherwise it is ignored and a new
session with a new sid is created. Ifsid is not provided, the object will attempt to look at cookies for session id.
If a sid is found in cookies, but it is not previously known or the session has expired, then a new sid is created.
Whether a session is “new” can be determined by calling theis new() method.

Cookies generated by sessions will have a path attribute which is calculated by comparing the server
DocumentRoot and the directory in which thePythonHandler directive currently in effect was speci-
fied. E.g. if document root is ‘/a/b/c’ and the directoryPythonHandler was specified was ‘/a/b/c/d/e’, the
path will be set to ‘/d/e’.

The deduction of the path in this way will only work though where theDirectory directive is
used and the directory is actually within the document root. If theLocation directive is used
or the directory is outside of the document root, the path will be set to ‘/’. You can force a
specific path by setting themod python.session.application path option (‘PythonOption
mod python.session.application path /my/path ’ in server configuration).

Note that prior to modpython 3.3, the option wasApplicationPath . If your system needs to be compatible
with older versions of modpython, you should continue to use the now obsolete option name.

The domain of a cookie is by default not set for a session and as such the session is only valid for the host
which generated it. In order to have a session which spans across common sub domains, you can specify
the parent domain using themod python.session.application domain option (‘PythonOption
mod python.session.application domain mod python.org ’ in server configuration).

When asecretis provided,BaseSession will useSignedCookie when generating cookies thereby making
the session id almost impossible to fake. The default is to use plainCookie (though even if not signed, the
session id is generated to be very difficult to guess).

A session will timeout if it has not been accessed and a save performed, within thetimeoutperiod. Upon a save
occuring the time of last access is updated and the period until the session will timeout be reset. The default
timeoutperiod is 30 minutes. An attempt to load an expired session will result in a “new” session.

The lock argument (defaults to 1) indicates whether locking should be used. When locking is on, only one
session object with a particular session id can be instantiated at a time.

A session is in “new” state when the session id was just generated, as opposed to being passed in via cookies or
thesid argument.

is new()
Returns 1 if this session is new. A session will also be “new” after an attempt to instantiate an expired or
non-existent session. It is important to use this method to test whether an attempt to instantiate a session
has succeeded, e.g.:

54 Chapter 4. Python API

sess = Session(req)
if sess.is_new():

redirect to login
util.redirect(req, ’http://www.mysite.com/login’)

id ()
Returns the session id.

created ()
Returns the session creation time in seconds since beginning of epoch.

last accessed ()
Returns last access time in seconds since beginning of epoch.

timeout ()
Returns session timeout interval in seconds.

set timeout (secs)
Set timeout tosecs.

invalidate ()
This method will remove the session from the persistent store and also place a header in outgoing headers
to invalidate the session id cookie.

load ()
Load the session values from storage.

save ()
This method writes session values to storage.

delete ()
Remove the session from storage.

init lock ()
This method initializes the session lock. There is no need to ever call this method, it is intended for
subclasses that wish to use an alternative locking mechanism.

lock ()
Locks this session. If the session is already locked by another thread/process, wait until that lock is
released. There is no need to call this method if locking is handled automatically (default).

This method registeres a cleanup which always unlocks the session at the end of the request processing.

unlock ()
Unlocks this session. (Same aslock() - when locking is handled automatically (default), there is no
need to call this method).

cleanup ()
This method is for subclasses to implement session storage cleaning mechanism (i.e. deleting expired ses-
sions, etc.). It will be called at random, the chance of it being called is controlled byCLEANUPCHANCE
Session module variable (default 1000). This means that cleanups will be ordered at random and there is
1 in 1000 chance of it happening. Subclasses implementing this method should not perform the (potentially
time consuming) cleanup operation in this method, but should instead usereq.register cleanup
to register a cleanup which will be executed after the request has been processed.

classDbmSession (req,[, dbm, sid, secret, dbmtype, timeout, lock])
This class provides session storage using a dbm file. Generally, dbm access is very fast, and most dbm imple-
mentations memory-map files for faster access, which makes their performance nearly as fast as direct shared
memory access.

dbm is the name of the dbm file (the file must be writable by the httpd process). This file is not deleted
when the server process is stopped (a nice side benefit of this is that sessions can survive server restarts).

4.8. Session – Session Management 55

By default the session information is stored in a dbmfile named ‘mp sess.dbm’ and stored in a tempo-
rary directory returned bytempfile.gettempdir() standard library function. An alternative direc-
tory can be specified usingPythonOption mod python.dbm session.database directory
/path/to/directory . The path and filename can can be overridden by settingPythonOption
mod python.dbm session.database filename filename .

Note that the above names for thePythonOption settings were changed to these values in modpython 3.3.
If you need to retain compatability with older versions of modpython, you should continue to use the now
obsoletesession directory andsession dbmoptions.

The implementation uses Pythonanydbm module, which will default todbhash on most systems. If you need
to use a specific dbm implementation (e.g.gdbm), you can pass that module asdbmtype.

Note that using this class directly is not cross-platform. For best compatibility across platforms, always use the
Session() function to create sessions.

classFileSession (req,[, sid, secret, timeout, lock, fastcleanup, verifycleanup])
New in version 3.2.0.

This class provides session storage using a separate file for each session. It is a subclass ofBaseSession .

Session data is stored in a separate file for each session. These files are not deleted when
the server process is stopped, so sessions are persistent across server restarts. The ses-
sion files are saved in a directory named mpsess in the temporary directory returned by the
tempfile.gettempdir() standard library function. An alternate path can be set usingPythonOption
mod python.file session.database directory /path/to/directory . This directory
must exist and be readable and writeable by the apache process.

Note that the above name for thePythonOption setting was changed to these values in modpython 3.3.
If you need to retain compatability with older versions of modpython, you should continue to use the now
obsoletesession directory option.

Expired session files are periodically removed by the cleanup mechanism. The be-
haviour of the cleanup can be controlled using thefast cleanup and verify cleanup param-
eters, as well as PythonOption modpython.file session.cleanuptime limit and PythonOption
mod python.file session.cleanupgrace period.

•fast cleanupA boolean value used to turn on FileSession cleanup optimization. Default isTrueand will
result in reduced cleanup time when there are a large number of session files.

When fast cleanup is True, the modification time for the session file is used to determine if it is a
candidate for deletion. If(current time - file modification time) > (timeout +
grace period) , the file will be a candidate for deletion. Ifverify cleanupis False, no futher checks
will be made and the file will be deleted.

If fast cleanupis False, the session file will unpickled and it’s timeout value used to determine if the
session is a candidate for deletion.fast cleanup= False impliesverify cleanup= True.

The timeout used in the fastcleanup calculation is same as the timeout for the session in the current
request running the filesessioncleanup. If your session objects are not using the same timeout, or you
are manually setting the timeout for a particular session withset timeout() , you will need to set
verify cleanup= True.

The value of fast cleanup can also be set using PythonOption
mod python.file session.enable fast cleanup .

•verify cleanupBoolean value used to optimize the FileSession cleanup process. Default isTrue .

If verify cleanupis True, the session file which is being considered for deletion will be unpickled and its
timeout value will be used to decide if the file should be deleted.

Whenverify cleanupis False, the timeout value for the current session will be used in to determine if the
session has expired. In this case, the session data will not be read from disk, which can lead to a substantial
performance improvement when there are a large number of session files, or where each session is saving

56 Chapter 4. Python API

a large amount of data. However this may result in valid sessions being deleted if all the sessions are not
using a the same timeout value.

The value of verify cleanup can also be set using PythonOption
mod python.file session.verify session timeout .

•PythonOption modpython.file session.cleanuptime limit [value] Integer value in seconds. Default is 2
seconds.

Session cleanup could potentially take a long time and be both cpu and disk intensive, depending on the
number of session files and if each file needs to be read to verify the timeout value. To avoid overloading the
server, each time filesessioncleanup is called it will run for a maximum ofsessioncleanup time limit
seconds. Each cleanup call will resume from where the previous call left off so all session files will
eventually be checked.

Settingsessioncleanup time limit to 0 will disable this feature and filesessioncleanup will run to com-
pletion each time it is called.

•PythonOption modpython.file session.cleanupgrace period [value] Integer value in seconds. Default
is 240 seconds. This value is added to the session timeout in determining if a session file should be deleted.

There is a small chance that a the cleanup for a given session file may occur at the exact time that the
session is being accessed by another request. It is possible under certain circumstances for that session
file to be saved in the other request only to be immediately deleted by the cleanup. To avoid this race
condition, a session is allowed agrace periodbefore it is considered for deletion by the cleanup. As long
as the graceperiod is longer that the time it takes to complete the request (which should normally be less
than 1 second), the session will not be mistakenly deleted by the cleanup.

The default value should be sufficient for most applications.

classMemorySession (req,[, sid, secret, timeout, lock])
This class provides session storage using a global dictionary. This class provides by far the best performance,
but cannot be used in a multi-process configuration, and also consumes memory for every active session. It also
cannot be used where multiple Python interpreters are used within the one Apache process and it is necessary to
share sessions between applications running in the distinct interpreters.

Note that using this class directly is not cross-platform. For best compatibility across platforms, always use the
Session() function to create sessions.

4.8.2 Examples

The following example demonstrates a simple hit counter.

from mod_python import Session

def handler(req):
session = Session.Session(req)

try:
session[’hits’] += 1

except:
session[’hits’] = 1

session.save()

req.content_type = ’text/plain’
req.write(’Hits: %d\n’ % session[’hits’])
return apache.OK

4.8. Session – Session Management 57

4.9 psp – Python Server Pages

Thepsp module provides a way to convert text documents (including, but not limited to HTML documents) containing
Python code embedded in special brackets into pure Python code suitable for execution within a modpython handler,
thereby providing a versatile mechanism for delivering dynamic content in a style similar to ASP, JSP and others.

The parser used bypsp is written in C (generated using flex) and is therefore very fast.

See 7.2 “PSP Handler” for additional PSP information.

Inside the document, Pythoncodeneeds to be surrounded by ‘<%’ and ‘%>’. Pythonexpressionsare enclosed in ‘<%=’
and ‘%>’. A directivecan be enclosed in ‘<%@’ and ‘%>’. A comment (which will never be part of the resulting code)
can be enclosed in ‘<%-- ’ and ‘--%> ’

Here is a primitive PSP page that demonstrated use of both code and expression embedded in an HTML document:

<html>
<%
import time
%>
Hello world, the time is: <%=time.strftime("%Y-%m-%d, %H:%M:%S")%>
</html>

Internally, the PSP parser would translate the above page into the following Python code:

req.write("""<html>
""")
import time
req.write("""
Hello world, the time is: """); req.write(str(time.strftime("%Y-%m-%d, %H:%M:%S"))); req.write("""
</html>
""")

This code, when executed inside a handler would result in a page displaying words ‘Hello world, the time
is: ’ followed by current time.

Python code can be used to output parts of the page conditionally or in loops. Blocks are denoted from within Python
code by indentation. The last indentation in Python code (even if it is a comment) will persist through the document
until either end of document or more Python code.

Here is an example:

<html>
<%
for n in range(3):

This indent will persist
%>
<p>This paragraph will be
repeated 3 times.</p>
<%
This line will cause the block to end
%>
This line will only be shown once.

</html>

58 Chapter 4. Python API

The above will be internally translated to the following Python code:

req.write("""<html>
""")
for n in range(3):

This indent will persist
req.write("""

<p>This paragraph will be
repeated 3 times.</p>
""")
This line will cause the block to end
req.write("""
This line will only be shown once.

</html>
""")

The parser is also smart enough to figure out the indent if the last line of Python ends with ‘: ’ (colon). Considering
this, and that the indent is reset when a newline is encountered inside ‘<%%>’, the above page can be written as:

<html>
<%
for n in range(3):
%>
<p>This paragraph will be
repeated 3 times.</p>
<%
%>
This line will only be shown once.

</html>

However, the above code can be confusing, thus having descriptive comments denoting blocks is highly recommended
as a good practice.

The only directive supported at this time isinclude , here is how it can be used:

<%@ include file="/file/to/include"%>

If the parse() function was called with thedir argument, then the file can be specified as a relative path, otherwise
it has to be absolute.

classPSP(req,[, filename, string, vars])
This class represents a PSP object.

req is a request object;filenameandstringare optional keyword arguments which indicate the source of the PSP
code. Only one of these can be specified. If neither is specified,req.filename is used asfilename.

vars is a dictionary of global variables. Vars passed in therun() method will override vars passed in here.

This class is used internally by the PSP handler, but can also be used as a general purpose templating tool.

When a file is used as the source, the code object resulting from the specified file is stored in a memory cache
keyed on file name and file modification time. The cache is global to the Python interpreter. Therefore, unless
the file modification time changes, the file is parsed and resulting code is compiled only once per interpreter.

The cache is limited to 512 pages, which depending on the size of the pages could potentially occupy a significant
amount of memory. If memory is of concern, then you can switch to dbm file caching. Our simple tests showed
only 20% slower performance using bsd db. You will need to check which implementationanydbm defaults

4.9. psp – Python Server Pages 59

to on your system as some dbm libraries impose a limit on the size of the entry making them unsuitable. Dbm
caching can be enabled viamod python.psp.cache database filename Python option, e.g.:

PythonOption mod_python.psp.cache_database_filename ‘‘/tmp/pspcache.dbm’’

Note that the dbm cache file is not deleted when the server restarts.

Unlike with files, the code objects resulting from a string are cached in memory only. There is no option to
cache in a dbm file at this time.

Note that the above name for the option setting was only changed to this value in modpython 3.3. If you need
to retain backward compatability with older versions of modpython use thePSPDbmCacheoption instead.

run ([vars, flush])
This method will execute the code (produced at object initialization time by parsing and compiling the PSP
source). Optional argumentvars is a dictionary keyed by strings that will be passed in as global variables.
Optional argumentflushis a boolean flag indicating whether output should be flushed. The default is not
to flush output.

Additionally, the PSP code will be given global variablesreq , psp , session andform . A session will
be created and assigned tosession variable only ifsession is referenced in the code (the PSP handler
examinesco names of the code object to make that determination). Remember that a mere mention of
session will generate cookies and turn on session locking, which may or may not be what you want.
Similarly, a mod pythonFieldStorage object will be instantiated ifform is referenced in the code.

The object passed inpsp is an instance ofPSPInterface .

display code ()
Returns an HTML-formatted string representing a side-by-side listing of the original PSP code and result-
ing Python code produced by the PSP parser.

Here is an example of howPSPcan be used as a templating mechanism:

The template file:

<html>
<!-- This is a simple psp template called template.html -->
<h1>Hello, <%=what%>!</h1>

</html>

The handler code:

from mod_python import apache, psp

def handler(req):
template = psp.PSP(req, filename=’template.html’)
template.run({’what’:’world’})
return apache.OK

classPSPInterface ()
An object of this class is passed as a global variablepsp to the PSP code. Objects of this class are instantiated
internally and the interface to init is purposely undocumented.

set error page (filename)
Used to set a psp page to be processed when an exception occurs. If the path is absolute, it will be
appended to document root, otherwise the file is assumed to exist in the same directory as the current
page. The error page will receive one additional variable,exception , which is a 3-tuple returned by
sys.exc info() .

60 Chapter 4. Python API

apply data (object[, **kw])
This method will call the callable objectobject, passing form data as keyword arguments, and return the
result.

redirect (location[, permanent=0])
This method will redirect the browser to locationlocation. If permanent is true, then
MOVEDPERMANENTLYwill be sent (as opposed toMOVEDTEMPORARILY).

Note: Redirection can only happen before any data is sent to the client, therefore the Python code block
calling this method must be at the very beginning of the page. Otherwise anIOError exception will be
raised.

Example:

<%

note that the ’<’ above is the first byte of the page!
psp.redirect(’http://www.modpython.org’)
%>

Additionally, thepsp module provides the following low level functions:

parse (filename[, dir])
This function will open file namedfilename, read and parse its content and return a string of resulting Python
code.

If dir is specified, then the ultimate filename to be parsed is constructed by concatenatingdir andfilename, and
the argument toinclude directive can be specified as a relative path. (Note that this is a simple concatenation,
no path separator will be inserted ifdir does not end with one).

parsestring (string)
This function will parse contents ofstringand return a string of resulting Python code.

4.9. psp – Python Server Pages 61

62

CHAPTER

FIVE

Apache Configuration Directives

5.1 Request Handlers

5.1.1 Python*Handler Directive Syntax

All request handler directives have the following syntax:

Python*Handler handler [handler ...] [| .ext [.ext ...]]

Wherehandleris a callable object that accepts a single argument - request object, and.ext is a file extension.

Multiple handlers can be specified on a single line, in which case they will be called sequentially, from left to right.
Same handler directives can be specified multiple times as well, with the same result - all handlers listed will be
executed sequentially, from first to last.

If any handler in the sequence returns a value other thanapache.OK or apache.DECLINED , then execution of all
subsequent handlers for that phase are aborted. What happens when eitherapache.OK or apache.DECLINED is
returned is dependent on which phase is executing.

Note that prior to modpython 3.3, if any handler in the sequence, no matter which phase was executing, returned a
value other thanapache.OK , then execution of all subsequent handlers for that phase was aborted.

The list of handlers can optionally be followed by a| followed by one or more file extensions. This would restrict
the execution of the handler to those file extensions only. This feature only works for handlers executed after the trans
phase.

A handlerhas the following syntax:

module[::object]

Wheremodulecan be a full module name (package dot notation is accepted) or an actual path to a module code file.
The module is loaded using the modpython module importer as implemented by theapache.import module()
function. Reference should be made to the documentation of that function for further details of how module importing
is managed.

The optionalobject is the name of an object inside the module. Object can also contain dots, in which case it will
be resolved from left to right. During resolution, if modpython encounters an object of type<class> , it will try
instantiating it passing it a single argument, a request object.

If no object is specified, then it will default to the directive of the handler, all lower case, with the word ‘python ’
removed. E.g. the default object for PythonAuthenHandler would be authenhandler.

Example:

PythonAuthzHandler mypackage.mymodule::checkallowed

63

For more information on handlers, see Overview of a Handler.

Side note: The ‘:: ’ was chosen for performance reasons. In order for Python to use objects inside modules, the
modules first need to be imported. Having the separator as simply a ‘. ’, would considerably complicate process of
sequentially evaluating every word to determine whether it is a package, module, class etc. Using the (admittedly
un-Python-like) ‘:: ’ takes the time consuming work of figuring out where the module part ends and the object inside
of it begins away from modpython resulting in a modest performance gain.

5.1.2 PythonPostReadRequestHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host
Override: not None
Module: mod python.c

This handler is called after the request has been read but before any other phases have been processed. This is useful
to make decisions based upon the input header fields.

Where multiple handlers are specified, if any handler in the sequence returns a value other thanapache.OK or
apache.DECLINED , then execution of all subsequent handlers for this phase are aborted.

Note: When this phase of the request is processed, the URI has not yet been translated into a path name, therefore this
directive could never be executed by Apache if it could specified within<Directory> , <Location> , <File>
directives or in an ‘.htaccess’ file. The only place this directive is allowed is the main configuration file, and the
code for it will execute in the main interpreter. And because this phase happens before any identification of the type
of content being requested is done (i.e. is this a python program or a gif?), the python routine specified with this
handler will be called forALL requests on this server (not just python programs), which is an important consideration
if performance is a priority.

The handlers below are documented in order in which phases are processed by Apache.

5.1.3 PythonTransHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host
Override: not None
Module: mod python.c

This handler gives allows for an opportunity to translate the URI into an actual filename, before the server’s default
rules (Alias directives and the like) are followed.

Where multiple handlers are specified, if any handler in the sequence returns a value other thanapache.DECLINED ,
then execution of all subsequent handlers for this phase are aborted.

Note: At the time when this phase of the request is being processed, the URI has not been translated into a path
name, therefore this directive will never be executed by Apache if specified within<Directory> , <Location> ,
<File> directives or in an ‘.htaccess’ file. The only place this can be specified is the main configuration file, and the
code for it will execute in the main interpreter.

5.1.4 PythonHeaderParserHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

64 Chapter 5. Apache Configuration Directives

This handler is called to give the module a chance to look at the request headers and take any appropriate specific
actions early in the processing sequence.

Where multiple handlers are specified, if any handler in the sequence returns a value other thanapache.OK or
apache.DECLINED , then execution of all subsequent handlers for this phase are aborted.

5.1.5 PythonInitHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This handler is the first handler called in the request processing phases that is allowed both inside and outside
‘ .htaccess’ and directory.

Where multiple handlers are specified, if any handler in the sequence returns a value other thanapache.OK or
apache.DECLINED , then execution of all subsequent handlers for this phase are aborted.

This handler is actually an alias to two different handlers. When specified in the main config file outside
any directory tags, it is an alias toPostReadRequestHandler . When specified inside directory (where
PostReadRequestHandler is not allowed), it aliases toPythonHeaderParserHandler .

(This idea was borrowed from modperl)

5.1.6 PythonAccessHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This routine is called to check for any module-specific restrictions placed upon the requested resource.

Where multiple handlers are specified, if any handler in the sequence returns a value other thanapache.OK or
apache.DECLINED , then execution of all subsequent handlers for this phase are aborted.

For example, this can be used to restrict access by IP number. To do so, you would returnHTTP FORBIDDENor
some such to indicate that access is not allowed.

5.1.7 PythonAuthenHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This routine is called to check the authentication information sent with the request (such as looking up the user in a
database and verifying that the [encrypted] password sent matches the one in the database).

Where multiple handlers are specified, if any handler in the sequence returns a value other thanapache.DECLINED ,
then execution of all subsequent handlers for this phase are aborted.

To obtain the username, usereq.user . To obtain the password entered by the user, use the
req.get basic auth pw() function.

A return ofapache.OK means the authentication succeeded. A return ofapache.HTTP UNAUTHORIZEDwith
most browser will bring up the password dialog box again. A return ofapache.HTTP FORBIDDENwill usually

5.1. Request Handlers 65

show the error on the browser and not bring up the password dialogagain. HTTP FORBIDDENshould be used
when authentication succeeded, but the user is not permitted to access a particular URL.

An example authentication handler might look like this:

def authenhandler(req):

pw = req.get_basic_auth_pw()
user = req.user
if user == "spam" and pw == "eggs":

return apache.OK
else:

return apache.HTTP_UNAUTHORIZED

Note: req.get basic auth pw() must be called prior to using thereq.user value. Apache makes no
attempt to decode the authentication information unlessreq.get basic auth pw() is called.

5.1.8 PythonAuthzHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This handler runs after AuthenHandler and is intended for checking whether a user is allowed to access a particular
resource. But more often than not it is done right in the AuthenHandler.

Where multiple handlers are specified, if any handler in the sequence returns a value other thanapache.DECLINED ,
then execution of all subsequent handlers for this phase are aborted.

5.1.9 PythonTypeHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This routine is called to determine and/or set the various document type information bits, like Content-type (via
r->content type), language, et cetera.

Where multiple handlers are specified, if any handler in the sequence returns a value other thanapache.DECLINED ,
then execution of all subsequent handlers for this phase are aborted.

5.1.10 PythonFixupHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This routine is called to perform any module-specific fixing of header fields, et cetera. It is invoked just before any
content-handler.

Where multiple handlers are specified, if any handler in the sequence returns a value other thanapache.OK or

66 Chapter 5. Apache Configuration Directives

apache.DECLINED , then execution of all subsequent handlers for this phase are aborted.

5.1.11 PythonHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This is the main request handler. Many applications will only provide this one handler.

Where multiple handlers are specified, if any handler in the sequence returns a status value other thanapache.OK or
apache.DECLINED , then execution of subsequent handlers for the phase are skipped and the return status becomes
that for the whole content handler phase. If all handlers are run, the return status of the final handler is what becomes
the return status of the whole content handler phase. Where that final status isapache.DECLINED , Apache will fall
back to using thedefault-handler and attempt to serve up the target as a static file.

5.1.12 PythonLogHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This routine is called to perform any module-specific logging activities.

Where multiple handlers are specified, if any handler in the sequence returns a value other thanapache.OK or
apache.DECLINED , then execution of all subsequent handlers for this phase are aborted.

5.1.13 PythonCleanupHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This is the very last handler, called just before the request object is destroyed by Apache.

Unlike all the other handlers, the return value of this handler is ignored. Any errors will be logged to the error log, but
will not be sent to the client, even if PythonDebug is On.

This handler is not a valid argument to therec.add handler() function. For dynamic clean up registration, use
req.register cleanup() .

Once cleanups have started, it is not possible to register more of them. Therefore,req.register cleanup()
has no effect within this handler.

Cleanups registered with this directive will executeaftercleanups registered withreq.register cleanup() .

5.2 Filters

5.2.1 PythonInputFilter

Syntax: PythonInputFilter handler name

5.2. Filters 67

Context:server config
Module: mod python.c

Registers an input filterhandlerunder namename. Handler is a module name optionally followed:: and a callable
object name. If callable object name is omitted, it will default to ‘inputfilter ’. Nameis the name under which
the filter is registered, by convention filter names are usually in all caps.

The modulereferred to by the handler can be a full module name (package dot notation is accepted) or an actual
path to a module code file. The module is loaded using the modpython module importer as implemented by the
apache.import module() function. Reference should be made to the documentation of that function for further
details of how module importing is managed.

To activate the filter, use theAddInputFilter directive.

5.2.2 PythonOutputFilter

Syntax: PythonOutputFilter handler name
Context:server config
Module: mod python.c

Registers an output filterhandlerunder namename. Handler is a module name optionally followed:: and a callable
object name. If callable object name is omitted, it will default to ‘outputfilter ’. Nameis the name under which
the filter is registered, by convention filter names are usually in all caps.

The modulereferred to by the handler can be a full module name (package dot notation is accepted) or an actual
path to a module code file. The module is loaded using the modpython module importer as implemented by the
apache.import module() function. Reference should be made to the documentation of that function for further
details of how module importing is managed.

To activate the filter, use theAddOutputFilter directive.

5.3 Connection Handler

5.3.1 PythonConnectionHandler

Syntax: PythonConnectionHandler handler
Context:server config
Module: mod python.c

Specifies that the connection should be handled withhandlerconnection handler.Handler will be passed a single
argument - the connection object.

Handler is a module name optionally followed:: and a callable object name. If callable object name is omitted, it
will default to ‘connectionhandler ’.

Themodulecan be a full module name (package dot notation is accepted) or an absolute path to a module code file.
The module is loaded using the modpython module importer as implemented by theapache.import module()
function. Reference should be made to the documentation of that function for further details of how module importing
is managed.

68 Chapter 5. Apache Configuration Directives

5.4 Other Directives

5.4.1 PythonEnablePdb

Syntax: PythonEnablePdb{On, Off}
Default: PythonEnablePdb Off
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

When On, modpython will execute the handler functions within the Python debugger pdb using the
pdb.runcall() function.

Because pdb is an interactive tool, start httpd from the command line with the -DONEPROCESS option when using
this directive. As soon as your handler code is entered, you will see a Pdb prompt allowing you to step through the
code and examine variables.

5.4.2 PythonDebug

Syntax: PythonDebug{On, Off}
Default: PythonDebug Off
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

Normally, the traceback output resulting from uncaught Python errors is sent to the error log. With PythonDebug On
directive specified, the output will be sent to the client (as well as the log), except when the error isIOError while
writing, in which case it will go to the error log.

This directive is very useful during the development process. It is recommended that you do not use it production
environment as it may reveal to the client unintended, possibly sensitive security information.

5.4.3 PythonImport

Syntax: PythonImportmodule interpretername
Context:server config
Module: mod python.c

Tells the server to import the Python module module at process startup under the specified interpreter name. The
import takes place at child process initialization, so the module will actually be imported once for every child process
spawned.

Themodulecan be a full module name (package dot notation is accepted) or an absolute path to a module code file.
The module is loaded using the modpython module importer as implemented by theapache.import module()
function. Reference should be made to the documentation of that function for further details of how module importing
is managed.

ThePythonImport directive is useful for initialization tasks that could be time consuming and should not be done
at the time of processing a request, e.g. initializing a database connection. Where such initialization code could fail
and cause the importing of the module to fail, it should be placed in its own function and the alternate syntax used:

PythonImport module::function interpreter name

The named function will be called only after the module has been imported successfully. The function will be called
with no arguments.

Note: At the time when the import takes place, the configuration is not completely read yet, so all other directives,

5.4. Other Directives 69

including PythonInterpreter have no effect on the behavior of modules imported by this directive. Because of this
limitation, the interpreter must be specified explicitly, and must match the name under which subsequent requests
relying on this operation will execute. If you are not sure under what interpreter name a request is running, examine
the interpreter member of the request object.

See also Multiple Interpreters.

5.4.4 PythonInterpPerDirectory

Syntax: PythonInterpPerDirectory{On, Off}
Default: PythonInterpPerDirectory Off
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

Instructs modpython to name subinterpreters using the directory of the file in the request (req.filename) rather
than the the server name. This means that scripts in different directories will execute in different subinterpreters as
opposed to the default policy where scripts in the same virtual server execute in the same subinterpreter, even if they
are in different directories.

For example, assume there is a ‘/directory/subdirectory’. ‘ /directory’ has an .htaccess file with a PythonHandler direc-
tive. ‘/directory/subdirectory’ doesn’t have an .htaccess. By default, scripts in /directory and ‘/directory/subdirectory’
would execute in the same interpreter assuming both directories are accessed via the same virtual server. With Python-
InterpPerDirectory, there would be two different interpreters, one for each directory.

Note: In early phases of the request prior to the URI translation (PostReadRequestHandler and TransHandler) the path
is not yet known because the URI has not been translated. During those phases and with PythonInterpPerDirectory on,
all python code gets executed in the main interpreter. This may not be exactly what you want, but unfortunately there
is no way around this.

See Also:

Section 4.1 Multiple Interpreters
(pyapi-interps.html)

for more information

5.4.5 PythonInterpPerDirective

Syntax: PythonInterpPerDirective{On, Off}
Default: PythonInterpPerDirective Off
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

Instructs modpython to name subinterpreters using the directory in which the Python*Handler directive currently in
effect was encountered.

For example, assume there is a ‘/directory/subdirectory’. ‘ /directory’ has an .htaccess file with a PythonHandler di-
rective. ‘/directory/subdirectory’ has another ‘.htaccess’ file with another PythonHandler. By default, scripts in
‘ /directory’ and ‘/directory/subdirectory’ would execute in the same interpreter assuming both directories are in the
same virtual server. With PythonInterpPerDirective, there would be two different interpreters, one for each directive.

See Also:

Section 4.1 Multiple Interpreters
(pyapi-interps.html)

for more information

70 Chapter 5. Apache Configuration Directives

5.4.6 PythonInterpreter

Syntax: PythonInterpreter name
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

Forces modpython to use interpreter namedname, overriding the default behaviour or behaviour dictated by
PythonInterpPerDirectory or PythonInterpPerDirective directive.

This directive can be used to force execution that would normally occur in different subinterpreters to run in the same
one. When specified in the DocumentRoot, it forces the whole server to run in one subinterpreter.

See Also:

Section 4.1 Multiple Interpreters
(pyapi-interps.html)

for more information

5.4.7 PythonHandlerModule

Syntax: PythonHandlerModule module
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

PythonHandlerModule can be used an alternative to Python*Handler directives. The module specified in this handler
will be searched for existence of functions matching the default handler function names, and if a function is found, it
will be executed.

For example, instead of:

PythonAuthenHandler mymodule
PythonHandler mymodule
PythonLogHandler mymodule

one can simply say

PythonHandlerModule mymodule

5.4.8 PythonAutoReload

Syntax: PythonAutoReload{On, Off}
Default: PythonAutoReload On
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

If set to Off, instructs modpython not to check the modification date of the module file.

By default, mod python checks the time-stamp of the file and reloads the module if the module’s file modification
date is later than the last import or reload. This way changed modules get automatically reimported, eliminating the
need to restart the server for every change.

5.4. Other Directives 71

Disabling autoreload is useful in production environment where the modules do not change; it will save some process-
ing time and give a small performance gain.

5.4.9 PythonOptimize

Syntax: PythonOptimize{On, Off}
Default: PythonOptimize Off
Context:server config
Module: mod python.c

Enables Python optimization. Same as the Python-O option.

5.4.10 PythonOption

Syntax: PythonOption key [value]
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

Assigns a key value pair to a table that can be later retrieved by thereq.get options() function. This is useful
to pass information between the apache configuration files (‘httpd.conf’, ‘ .htaccess’, etc) and the Python programs. If
the value is omitted or empty (""), then the key is removed from the local configuration.

Reserved PythonOption Keywords

Some PythonOption keywords are used for configuring various aspects of modpython. Any keyword starting with
mod python.* should be considered as reserved for internal modpython use.

Users are encouraged to use their own namespace qualifiers when creating add-on modules, and not pollute the global
namespace.

The following PythonOption keys are currently used by modpython.

72 Chapter 5. Apache Configuration Directives

Key Required Value Notes
mod python.legacy.importer * Enables the obsolete importer.
mod python.mutexdirectory
mod python.mutex locks
mod python.psp.cachedatabasefilename
mod python.session.sessiontype
mod python.session.cookiename
mod python.session.applicationdomain
mod python.session.applicationpath
mod python.session.databasedirectory
mod python.dbm session.databasefilename
mod python.dbm session.databasedirectory
mod python.file session.enablefast cleanup
mod python.file session.verifysessiontimeout
mod python.file session.cleanupgrace period
mod python.file session.cleanuptime limit
mod python.file session.databasedirectory
session Deprecated in 3.3, use modpython.session.sessiontype
ApplicationPath Deprecated in 3.3, use modpython.session.applicationpath
sessioncookie name Deprecated in 3.3, use modpython.session.cookiename
sessiondirectory Deprecated in 3.3, use modpython.session.databasedirectory
sessiondbm Deprecated in 3.3, use modpython.dbm session.databasefilename
sessioncleanup time limit Deprecated in 3.3, use modpython.file session.cleanuptime limit
sessionfast cleanup Deprecated in 3.3, use modpython.file session.enablefast cleanup
sessiongrace period Deprecated in 3.3, use modpython.file session.cleanupgrace period
sessionverify cleanup Deprecated in 3.3, use modpython.file session.cleanupsessiontimeout
PSPDbmCache Deprecated in 3.3, use modpython.psp.cachedatabasefilename

5.4.11 PythonPath

Syntax: PythonPathpath
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

PythonPath directive sets the PythonPath. The path must be specified in Python list notation, e.g.

PythonPath "[’/usr/local/lib/python2.0’, ’/usr/local/lib/site_python’, ’/some/other/place’]"

The path specified in this directive will replace the path, not add to it. However, because the value of the directive is
evaled, to append a directory to the path, one can specify something like

PythonPath "sys.path+[’/mydir’]"

Mod python tries to minimize the number of evals associated with the PythonPath directive because evals are slow
and can negatively impact performance, especially when the directive is specified in an ‘.htaccess’ file which gets
parsed at every hit. Modpython will remember the arguments to the PythonPath directive in the un-evaled form,
and before evaling the value it will compare it to the remembered value. If the value is the same, no action is taken.
Because of this, you should not rely on the directive as a way to restore the pythonpath to some value if your code
changes it.

Note: This directive should not be used as a security measure since the Python path is easily manipulated from within

5.4. Other Directives 73

the scripts.

74 Chapter 5. Apache Configuration Directives

CHAPTER

SIX

Server Side Includes

6.1 Overview of SSI

SSI (Server Side Includes) are directives that are placed in HTML pages, and evaluated on the server while the pages
are being served. They let you add dynamically generated content to an existing HTML page, without having to serve
the entire page via a CGI program, or other dynamic technology such as a modpython handler.

SSI directives have the following syntax:

<!--#element attribute=value attribute=value ... -->

It is formatted like an HTML comment, so if you don’t have SSI correctly enabled, the browser will ignore it, but it
will still be visible in the HTML source. If you have SSI correctly configured, the directive will be replaced with its
results.

For a more thorough description of the SSI mechanism and how to enable it, see theSSI tutorialprovided with the
Apache documentation.

Version 3.3 of modpython introduces support for using Python code within SSI files. Note that modpython honours
the intent of the ApacheIncludesNOEXEC option to theOptions directive. That is, ifIncludesNOEXEC is
enabled, then Python code within a SSI file will not be executed.

6.2 Using Python Code

The extensions to modpython to allow Python code to be used in conjunction with SSI introduces the new SSI
directive called ’python’. This directive can be used in two forms, these being ’eval’ and ’exec’ modes. In the case of
’eval’, a Python expression is used and it is the result of that expression which is substituted in place into the page.

<!--#python eval="10*’HELLO ’" -->
<!--#python eval="len(’HELLO’)" -->

Where the result of the expression is not a string, the value will be automatically converted to a string by applying
str() to the value.

In the case of ’exec’ a block of Python code may be included. For any output from this code to appear in the page, it
must be written back explicitly as being part of the response. As SSI are processed by an Apache output filter, this is
done by using an instance of the modpythonfilter object which is pushed into the global data set available to the
code.

75

<!--#python exec="
filter.write(10*’HELLO ’)
filter.write(str(len(’HELLO’)))
" -->

Any Python code within the ’exec’ block must have a zero first level indent. You cannot start the code block with an
arbitrary level of indent such that it lines up with any indenting used for surrounding HTML elements.

Although the modpythonfilter object is not a true file object, that it provides thewrite() method is sufficient
to allow theprint statement to be used on it directly. This will avoid the need to explicitly convert non string objects
to a string before being output.

<!--#python exec="
print >> filter, len(’HELLO’)
" -->

6.3 Scope of Global Data

Multiple instances of ’eval’ or ’exec’ code blocks may be used within the one page. Any changes to or creation of
global data which is performed within one code block will be reflected in any following code blocks. Global data
constitutes variables as well as module imports, function and class definitions.

<!--#python exec="
import cgi, time, os
def _escape(object):

return cgi.escape(str(object))
now = time.time()
" -->
<html>
<body>
<pre>
<!--#python eval="_escape(time.asctime(time.localtime(now)))"-->

<!--#python exec="
keys = os.environ.keys()
keys.sort()
for key in keys:

print >> filter, _escape(key),
print >> filter, ’=’,
print >> filter, _escape(repr(os.environ.get(key)))

" -->
</pre>
</body>
</html>

The lifetime of any global data is for the current request only. If data must persist between requests, it must reside in
external modules and as necessary be protected against multithreaded access in the event that a multithreaded Apache
MPM is used.

76 Chapter 6. Server Side Includes

6.4 Pre-propulating Globals

Any Python code which appears within the page has to be compiled each time the page is accessed before it is
executed. In other words, the compiled code is not cached between requests. To limit such recompilation and to
avoid duplication of common code amongst many pages, it is preferable to pre-populate the global data from within a
mod python handler prior to the page being processed.

In most cases, a fixup handler would be used for this purpose. For this to work, first need to configure Apache so that
it knows to call the fixup handler.

PythonFixupHandler _handlers

The implementation of the fixup handler contained inhandlers.py then needs to create an instance of a Python
dictionary, store that in the modpython request object asssi globals and then populate that dictionary with any
data to be available to the Python code executing within the page.

from mod_python import apache

import cgi, time

def _escape(object):
return cgi.escape(str(object))

def _header(filter):
print >> filter, ’...’

def _footer(filter):
print >> filter, ’...’

def fixuphandler(req):
req.ssi_globals = {}
req.ssi_globals[’time’] = time
req.ssi_globals[’_escape’] = _escape
req.ssi_globals[’_header’] = _header
req.ssi_globals[’_footer’] = _footer
return apache.OK

This is most useful where it is necessary to insert common information such as headers, footers or menu panes which
are dynamically generated into many pages.

<!--#python exec="
now = time.time()
" -->
<html>
<body>
<!--#python exec="_header(filter)" -->
<pre>
<!--#python eval="_escape(time.asctime(time.localtime(now)))"-->
</pre>
<!--#python exec="_footer(filter)" -->
</body>
</html>

6.4. Pre-propulating Globals 77

6.5 Conditional Expressions

SSI allows for some programmability in its own right through the use of conditional expressions. The structure of this
conditional construct is:

<!--#if expr="test_condition" -->
<!--#elif expr="test_condition" -->
<!--#else -->
<!--#endif -->

A test condition can be any sort of logical comparison, either comparing values to one another, or testing the ’truth’ of
a particular value.

The source of variables used in conditional expressions is distinct from the set of global data used by the Python
code executed within a page. Instead, the variables are sourced from thesubprocess env table object contained
within the request object. The values of these variables can be set from within a page using the SSI ’set’ directive, or
by a range of other Apache directives within the Apache configuration files such asBrowserMatchNoCase and
SetEnvIf .

To set these variables from within a modpython handler, thesubprocess env table object would be manipulated
directly through the request object.

from mod_python import apache

def fixuphandler(req):
debug = req.get_config().get(’PythonDebug’, ’0’)
req.subprocess_env[’DEBUG’] = debug
return apache.OK

If being done from within Python code contained within the page itself, the request object would first have to be
accessed via the filter object.

<!--#python exec="
debug = filter.req.get_config().get(’PythonDebug’, ’0’)
filter.req.subprocess_env[’DEBUG’] = debug
" -->
<html>
<body>
<!--#if expr="${DEBUG} != 0" -->
DEBUG ENABLED
<!--#else -->
DEBUG DISABLED
<!--#endif -->
</body>
</html>

6.6 Enabling INCLUDES Filter

SSI is traditionally enabled using theAddOutputFilter directive in the Apache configuration files. Normally this
would be where the request mapped to a static file.

78 Chapter 6. Server Side Includes

AddOutputFilter INCLUDES .shtml

When mod python is being used, the ability to dynamically enable output filters for the current request can instead
be used. This could be done just for where the request maps to a static file, but may just as easily be carried out
where the content of a response is generated dynamically. In either case, to enable SSI for the current request, the
add output filter() method of the modpython request object would be used.

from mod_python import apache

def fixuphandler(req):
req.add_output_filter(’INCLUDES’)
return apache.OK

6.6. Enabling INCLUDES Filter 79

80

CHAPTER

SEVEN

Standard Handlers

7.1 Publisher Handler

Thepublisher handler is a good way to avoid writing your own handlers and focus on rapid application develop-
ment. It was inspired byZopeZPublisher.

7.1.1 Introduction

To use the handler, you need the following lines in your configuration

<Directory /some/path>
SetHandler mod_python
PythonHandler mod_python.publisher

</Directory>

This handler allows access to functions and variables within a module via URL’s. For example, if you have the
following module, called ‘hello.py’:

""" Publisher example """

def say(req, what="NOTHING"):
return "I am saying %s" % what

A URL http://www.mysite.com/hello.py/say would return ‘I am saying NOTHING ’. A URL
http://www.mysite.com/hello.py/say?what=hello would return ‘I am saying hello ’.

7.1.2 The Publishing Algorithm

The Publisher handler maps a URI directly to a Python variable or callable object, then, respectively, returns it’s string
representation or calls it returning the string representation of the return value.

Traversal

The Publisher handler locates and imports the module specified in the URI. The module location is determined from
thereq.filename attribute. Before importing, the file extension, if any, is discarded.

81

If req.filename is empty, the module name defaults to ‘index ’.

Once module is imported, the remaining part of the URI up to the beginning of any query data (a.k.a. PATHINFO)
is used to find an object within the module. The Publisher handlertraversesthe path, one element at a time from left
to right, mapping the elements to Python object within the module.

If no path info was given in the URL, the Publisher handler will use the default value of ‘index ’. If the last element
is an object inside a module, and the one immediately preceding it is a directory (i.e. no module name is given), then
the module name will also default to ‘index ’.

The traversal will stop andHTTP NOT FOUNDwill be returned to the client if:

• Any of the traversed object’s names begin with an underscore (‘’). Use underscores to protect objects that
should not be accessible from the web.

• A module is encountered. Published objects cannot be modules for security reasons.

If an object in the path could not be found,HTTP NOT FOUNDis returned to the client.

For example, given the following configuration:

DocumentRoot /some/dir

<Directory /some/dir>
SetHandler mod_python
PythonHandler mod_python.publisher

</Directory>

And the following ‘/some/dir/index.py’ file:

def index(req):
return "We are in index()"

def hello(req):
return "We are in hello()"

Then:

http://www.somehost/index/index will return ‘We are in index() ’

http://www.somehost/index/ will return ‘We are in index() ’

http://www.somehost/index/hello will return ‘We are in hello() ’

http://www.somehost/hello will return ‘We are in hello() ’

http://www.somehost/spam will return ‘404 Not Found ’

Argument Matching and Invocation

Once the destination object is found, if it is callable and not a class, the Publisher handler will get a list of arguments
that the object expects. This list is compared with names of fields from HTML form data submitted by the client
via POSTor GET. Values of fields whose names match the names of callable object arguments will be passed as
strings. Any fields whose names do not match the names of callable argument objects will be silently dropped, unless
the destination callable object has a**kwargs style argument, in which case fields with unmatched names will be
passed in the**kwargs argument.

82 Chapter 7. Standard Handlers

If the destination is not callable or is a class, then its string representation is returned to the client.

Authentication

The publisher handler provides simple ways to control access to modules and functions.

At every traversal step, the Publisher handler checks for presence ofauth and access attributes (in this
order), as well as auth realm attribute.

If auth is found and it is callable, it will be called with three arguments: theRequest object, a string
containing the user name and a string containing the password. If the return value ofauth is false, then
HTTP UNAUTHORIZEDis returned to the client (which will usually cause a password dialog box to appear).

If auth is a dictionary, then the user name will be matched against the key and the password against the value
associated with this key. If the key and password do not match,HTTP UNAUTHORIZEDis returned. Note that this
requires storing passwords as clear text in source code, which is not very secure.

auth can also be a constant. In this case, if it is false (i.e.None, 0, "" , etc.), thenHTTP UNAUTHORIZEDis
returned.

If there exists an auth realm string, it will be sent to the client as Authorization Realm (this is the text that
usually appears at the top of the password dialog box).

If access is found and it is callable, it will be called with two arguments: theRequest object and a string
containing the user name. If the return value ofaccess is false, thenHTTP FORBIDDENis returned to the
client.

If access is a list, then the user name will be matched against the list elements. If the user name is not in the
list, HTTP FORBIDDENis returned.

Similarly to auth , access can be a constant.

In the example below, only user ‘eggs ’ with password ‘spam’ can access thehello function:

__auth_realm__ = "Members only"

def __auth__(req, user, passwd):

if user == "eggs" and passwd == "spam" or \
user == "joe" and passwd == "eoj":
return 1

else:
return 0

def __access__(req, user):
if user == "eggs":

return 1
else:

return 0

def hello(req):
return "hello"

Here is the same functionality, but using an alternative technique:

7.1. Publisher Handler 83

__auth_realm__ = "Members only"
__auth__ = {"eggs":"spam", "joe":"eoj"}
__access__ = ["eggs"]

def hello(req):
return "hello"

Since functions cannot be assigned attributes, to protect a function, anauth or access function can be
defined within the function, e.g.:

def sensitive(req):

def __auth__(req, user, password):
if user == ’spam’ and password == ’eggs’:

let them in
return 1

else:
no access
return 0

something involving sensitive information
return ’sensitive information‘

Note that this technique will also work if auth or access is a constant, but will not work is they are a
dictionary or a list.

The auth and access mechanisms exist independently of the standardPythonAuthenHandler. It is
possible to use, for example, the handler to authenticate, then theaccess list to verify that the authenticated
user is allowed to a particular function.

Note: In order for mod python to access auth , the module containing it must first be imported. Therefore, any
module-level code will get executed during the import even ifauth is false. To truly protect a module from
being accessed, use other authentication mechanisms, e.g. the Apachemod auth or with a mod pythonPythonAu-
thenHandlerhandler.

7.1.3 Form Data

In the process of matching arguments, the Publisher handler creates an instance ofFieldStorageclass. A reference to
this instance is stored in an attributeform of theRequest object.

Since a FieldStorage can only be instantiated once per request, one must not attempt to instantiate
FieldStorage when using the Publisher handler and should useRequest.form instead.

7.2 PSP Handler

PSP handler is a handler that processes documents using thePSPclass inmod python.psp module.

To use it, simply add this to your httpd configuration:

84 Chapter 7. Standard Handlers

AddHandler mod_python .psp
PythonHandler mod_python.psp

For more details on the PSP syntax, see Section 4.9.

If PythonDebug server configuration isOn, then by appending an underscore (‘’) to the end of the url you can get
a nice side-by-side listing of original PSP code and resulting Python code generated by thepsp module. This is very
useful for debugging. You’ll need to adjust your httpd configuration:

AddHandler mod_python .psp .psp_
PythonHandler mod_python.psp
PythonDebug On

Note: Leaving debug on in a production environment will allow remote users to display source code of your PSP
pages!

7.3 CGI Handler

CGI handler is a handler that emulates the CGI environment under modpython.

Note that this is not a ‘true ’ CGI environment in that it is emulated at the Python level.stdin and stdout
are provided by substitutingsys.stdin andsys.stdout , and the environment is replaced by a dictionary. The
implication is that any outside programs called from within this environment viaos.system , etc. will not see the
environment available to the Python program, nor will they be able to read/write from standard input/output with the
results expected in a ‘true ’ CGI environment.

The handler is provided as a stepping stone for the migration of legacy code away from CGI. It is not recommended
that you settle on using this handler as the preferred way to use modpython for the long term. This is because the
CGI environment was not intended for execution within threads (e.g. requires changing of current directory with
is inherently not thread-safe, so to overcome this cgihandler maintains a thread lock which forces it to process one
request at a time in a multi-threaded server) and therefore can only be implemented in a way that defeats many of the
advantages of using modpython in the first place.

To use it, simply add this to your ‘.htaccess’ file:

SetHandler mod_python
PythonHandler mod_python.cgihandler

As of version 2.7, the cgihandler will properly reload even indirectly imported module. This is done by saving a list of
loaded modules (sys.modules) prior to executing a CGI script, and then comparing it with a list of imported modules
after the CGI script is done. Modules (except for whose whosefile attribute points to the standard Python library
location) will be deleted from sys.modules thereby forcing Python to load them again next time the CGI script imports
them.

If you do not want the above behavior, edit the ‘cgihandler.py’ file and comment out the code delimited by ###.

Tests show the cgihandler leaking some memory when processing a lot of file uploads. It is still not clear what causes
this. The way to work around this is to set the ApacheMaxRequestsPerChild to a non-zero value.

7.3. CGI Handler 85

86

CHAPTER

EIGHT

Security

Considerations on using modpython in a secure manner can be found in themod python wikiatCategorySecurity.

87

88

APPENDIX

A

Changes from Version (3.2.10)

New Features

• (MODPYTHON-103) New req.add output filter() , req.add input filter() ,
req.register output fiter() , req.register input filter() methods. These allows
the dynamic registration of filters and the attaching of filters to the current request.

• (MODPYTHON-104) Support added for using Python in content being passed through ”INCLUDES” output
filter, or as more commonly referred to server side include (SSI) mechanism.

• (MODPYTHON-108) Added support to cookies forhttponly attribute, an extension originally created by
Microsoft, but now getting more widespread use in the battle against cross site-scripting attacks.

• (MODPYTHON-118) Now possible using thePythonImport directive to specify the name of a function
contained in the module to be called once the designated module has been imported.

• (MODPYTHON-124) New req.auth name() andreq.auth type() methods. These return the values
associated with the AuthName and AuthType directives respectively. Thereq.ap auth type has now also
been made writable so that it can be set by an authentication handler.

• (MODPYTHON-130) Added req.set etag() , req.set last modified() and
req.update mtime() functions as wrappers for similar functions provided by Apache C API.
These are required to effectively use thereq.meets condition() function. The documentation
for req.meets condition() has also been updated as what it previously described probably wouldn’t
actually work.

• (MODPYTHON-132) New req.construct url() method. Used to construct a fully qualified URI string
incorporating correct scheme, server and port.

• (MODPYTHON-144) The ‘apache.interpreter ’ and ‘apache.main server ’ attributes have been
made publically available. These were previously private and not part of the public API.

• (MODPYTHON-149) Added support for session objects that span domains.

• (MODPYTHON-153) Added req.discard request body() function as wrapper for similar function
provided by Apache C API. The function tests for and reads any message body in the request, simply discarding
whatever it receives.

• (MODPYTHON-164) The req.add handler() , req.register input filter() and
req.register output filter() methods can now take a direct reference to a callable object as
well a string which refers to a module or module::function combination by name.

• (MODPYTHON-165) Exported functions from modpython module to be used in other third party modules
for Apache. The purpose of these functions is to allow those other modules to access the mechanics of how
mod python creates interpreters, thereby allowing other modules to also embed Python and for there not to be
a conflict with mod python.

89

• (MODPYTHON-170) Added req. request rec , server. server rec and conn. conn rec
semi private members for getting accessing to underlying Apache struct as a Python CObject. These can be
used for use in implementing SWIG bindings for lower level APIs of Apache. These members should be re-
garded as experimental and there are no guarantees that they will remain present in this specific form in the
future.

• (MODPYTHON-193) Added new attribute available asreq.hlist.location . For a handler executed di-
rectly as the result of a handler directive within aLocation directive, this will be set to the value of the
Location directive. IfLocationMatch , or wildcards or regular expressions are used withLocation , the
value will be the matched value in the URL and not the pattern.

Improvements

• (MODPYTHON-27) When using modpython.publisher, the auth () and access () functions
and the auth realm string can now be nested within a class method as a well a normal function.

• (MODPYTHON-90) ThePythonEnablePdb configuration option will now be ignored if Apache hasn’t been
started up in single process mode.

• (MODPYTHON-91) If running Apache in single process mode with PDB enabled and the ”quit” command is
used to exit that debug session, an exception indicating that the PDB session has been aborted is raised rather
thanNone being returned with a subsequent error complaining about the handler returning an invalid value.

• (MODPYTHON-93) Improvedutil.FieldStorage efficiency and made the interface more dictionary like.

• (MODPYTHON-101) Force an exception when handler evaluates to something other thanNone but is otherwise
not callable. Previously an exception would not be generated if the handler evaluated toFalse .

• (MODPYTHON-107) Neither mod python.publisher nor modpython.psp explicitly flush output after writing
the content of the response back to the request object. By not flushing output it is now possible to use the
”CONTENT LENGTH” output filter to add a ”Content-Length” header.

• (MODPYTHON-111) Note made in session documentation that a save is required to avoid session timeouts.

• (MODPYTHON-125) Thereq.handler attribute is now writable. This allows a handler executing in a phase
prior to the response phase to specify which Apache module will be responsible for generating the content.

• (MODPYTHON-128) Made thereq.canonical filename attribute writable. Changed thereq.finfo
attribute from being a tuple to an actual object. For backwards compatibility the attributes of the object can
still be accessed as if they were a tuple. New code however should access the attributes as member data. The
req.finfo attribute is also now writable and can be assigned to using the result of calling the new function
apache.stat() . This function is a wrapper forapr stat() .

• (MODPYTHON-129) When specifying multiple handlers for a phase, the status returned by each handler
is now treated the same as how Apache would treat the status if the handler was registered using the low
level C API. What this means is that whereas stacked handlers of any phase would in turn previously be
executed as long as they returnedapache.OK , this is no longer the case and what happens is depen-
dent on the phase. Specifically, a handler returningapache.DECLINED no longer causes the execution
of subsequent handlers for the phase to be skipped. Instead, it will move to the next of the stacked han-
dlers. In the case ofPythonTransHandler , PythonAuthenHandler , PythonAuthzHandler and
PythonTypeHandler , as soon asapache.OK is returned, subsequent handlers for the phase will be
skipped, as the result indicates that any processing pertinent to that phase has been completed. For other phases,
stacked handlers will continue to be executed ifapache.OK is returned as well as whenapache.DECLINED
is returned. This new interpretation of the status returned also applies to stacked content handlers listed against
the PythonHandler directive even though Apache notionally only ever calls at most one content handler.
Where all stacked content handlers in that phase run, the status returned from the last handler becomes the
overall status from the content phase.

90 Appendix A. Changes from Version (3.2.10)

• (MODPYTHON-141) The req.proxyreq andreq.uri attributes are now writable. This allows a handler
to setup these values and trigger proxying of the current request to a remote server.

• (MODPYTHON-142) Thereq.no cache andreq.no local copy attributes are now writable.

• (MODPYTHON-143) Completely reimplemented the module importer. This is now used whenever modules
are imported corresponding to any of thePython*Handler , Python*Filter andPythonImport di-
rectives. The module importer is still able to be used directly using theapache.import module() func-
tion. The new module importer no longer supports automatic reloading of packages/modules that appear on
the standard Python module search path as defined by thePythonPath directive or within an application
by direct changes tosys.path . Automatic module reloading is however still performed on file based mod-
ules (not packages) which are located within the document tree where handlers are located. Locations within
the document tree are however no longer added to the standard Python module search path automatically as
they are maintained within a distinct importer search path. ThePythonPath directive MUST not be used
to point at directories within the document tree. To have additional directories be searched by the module
importer, they should be listed in themod python.importer.path option using thePythonOption di-
rective. This is a path similar to howPythonPath argument is supplied, but MUST not referencesys.path
nor contain any directories also listed in the standard Python module search path. If an application does
not appear to work under the module importer, the old module importer can be reenabled by setting the
mod python.legacy.importer option using thePythonOption directive to the value ’* ’. This option
must be set in the global Apache configuration.

• (MODPYTHON-152) When in a sub request, when a request is the result of an internal redirect, or when when
returning from such a request, thereq.main , req.prev andreq.next members now correctly return a
reference to the original Python request object wrapper first created for the specificrequest rec instance
rather than creating a new distinct Python request object. This means that any data added explicitly to a request
object can be passed between such requests.

• (MODPYTHON-178) When using modpython.psp, if the PSP file which is the target of the request doesn’t
actually exist, anapache.HTTP NOT FOUNDserver error is now returned to the client rather than raising a
ValueError exception which results in a 500 internal server error. Note that if usingSetHandler and the
request is against the directory and noDirectoryIndex directive is specified which lists a valid PSP index
file, then the sameapache.HTTP NOT FOUNDserver error is returned to the client.

• (MODPYTHON-196) For completeness, added req.server.log error() and
req.connection.log error() . The latter wrapsap log cerror() (when available), allow-
ing client information to be logged along with message from a connection handler.

• (MODPYTHON-206) The attributereq.used path info is now modifiable and can be set from within
handlers. This is equivalent to having used theAcceptPathInfo directive.

• (MODPYTHON-207) The attributereq.args is now modifiable and can be set from within handlers.

Bug Fixes

• (MODPYTHON-38) Fixed issue when using PSP pages in conjunction with publisher handler or where a PSP
error page was being triggered, that form parameters coming from content of a POST request weren’t available
or only available using a workaround. Specifically, the PSP page will now use anyFieldStorage object
instance cached asreq.form left there by preceding code.

• (MODPYTHON-43) Nested auth () functions in mod python.publisher now execute in context of glob-
als from the file the function is in and not that of modpython.publisher itself.

• (MODPYTHON-47) Fixed mod python.publisher so it will not return a HTTP Bad Request response when
mod auth is being used to provide Digest authentication.

91

• (MODPYTHON-63) When handler directives are used withinDirectory or DirectoryMatch directives
where wildcards or regular expressions are used, the handler directory will be set to the shortest directory
matched by the directory pattern. Handler directives can now also be used withinFiles andFilesMatch
directives and the handler directory will correctly resolve to the directory corresponding to the enclosing
Directory or DirectoryMatch directive, or the directory the.htaccess file is contained in.

• (MODPYTHON-76) TheFilterDispatch callback should not flush the filter if it has already been closed.

• (MODPYTHON-84) The original change to fix the symlink issue forreq.sendfile() was causing problems
on Win32, plus code needed to be changed to work with APR 1.2.7.

• (MODPYTHON-100) When using stacked handlers and aSERVERRETURNexception was used to return an
OKstatus for that handler, any following handlers weren’t being run if appropriate for the phase.

• (MODPYTHON-109) ThePy Finalize() function was being called on child process shutdown. This was
being done though from within the context of a signal handler, which is generally unsafe and would cause the
process to lock up. This function is no longer called on child process shutdown.

• (MODPYTHON-112) The req.phase attribute is no longer overwritten by an input or output filter. The
filter.is input member should be used to determine if a filter is an input or output filter.

• (MODPYTHON-113) The PythonImport directive now uses theapache.import module() function
to import modules to avoid reloading problems when same module is imported from a handler.

• (MODPYTHON-114) Fixed race conditions on settingsys.path when thePythonPath directive is being
used as well as problems with infinite extension of path.

• (MODPYTHON-120) (MODPYTHON-121) Fixes to test suite so it will work on virtual hosting environments
wherelocalhost doesn’t resolve to127.0.0.1 but the actual IP address of the host.

• (MODPYTHON-126) WhenPython*Handler or Python*Filter directive is used inside of aFiles
directive container, the handler/filter directory value will now correctly resolve to the directory corresponding to
any parentDirectory directive or the location of the.htaccess file theFiles directive is contained in.

• (MODPYTHON-133) The table object returned byreq.server.get config() was not being populated
correctly to be the state of directives set at global scope for the server.

• (MODPYTHON-134) SettingPythonDebug to Off , wasn’t overridingOnsetting in parent scope.

• (MODPYTHON-140) Theutil.redirect() function should be returning server status ofapache.DONE
and notapache.OK otherwise it will not give desired result if used in non content handler phase or where
there are stacked content handlers.

• (MODPYTHON-147) Stopped directories being added tosys.path multiple times whenPythonImport
andPythonPath directive used.

• (MODPYTHON-148) Added missing Apache contantsapache.PROXYREQ RESPONSE and
apache.HTTP UPGRADEREQUIRED. Also added new constants for Apache magic mime types and
values for interpreting thereq.connection.keepalive andreq.read body members.

• (MODPYTHON-150) In a multithread MPM, theapache.init() function could be called more than once
for a specific interpreter instance whereas it should only be called once.

• (MODPYTHON-151) Debug error page returned to client when an exception in a handler occurred wasn’t es-
caping special HTML characters in the traceback or the details of the exception.

• (MODPYTHON-157) Wrong interpreter name used for fixup handler phase and earlier, when
PythonInterpPerDirectory was enabled and request was against a directory but client didn’t provide
the trailing slash.

• (MODPYTHON-159) Fix FieldStorage class so that it can handle multiline headers.

92 Appendix A. Changes from Version (3.2.10)

• (MODPYTHON-160) Using PythonInterpPerDirective when setting content handler to run dynami-
cally with req.add handler() would cause Apache to crash.

• (MODPYTHON-161) Directory argument supplied toreq.add handler() is canonicalized and a trail-
ing slash added automatically. This is needed to ensure that the directory is always in POSIX path style
as used by Apache and that convention where directories associated with directives always have trailing
slash is adhered to. If this is not done, a different interpreter can be chosen to that expected when the
PythonInterpPerDirective is used.

• (MODPYTHON-166) PythonHandlerModule was not setting up registration of the
PythonFixupHandler or PythonAuthenHandler . For the latter this meant that usingRequire
directive with PythonHandlerModule would cause a 500 error and complaint in error log about ”No
groups file”.

• (MODPYTHON-167) WhenPythonDebug wasOnand and exception occurred, the response to the client had
a status of200 when it really should have been a500 error status indicating that an internal error occurred. A
500 error status was correctly being returned whenPythonDebug wasOff .

• (MODPYTHON-168) Fixed psp parser error when CR is used as a line terminator in psp code. This may occur
with some older editors such as GoLive on Mac OS X.

• (MODPYTHON-175) Fixed problem whereby a main PSP page and an error page triggered from that page both
accessing the session object would cause a deadlock.

• (MODPYTHON-176) Fixed issue whereby PSP code would unlock session object which it had inherited from
the caller meaning caller could no longer use it safely. PSP code will now only unlock session if it created it in
the first place.

• (MODPYTHON-179) Fixed the behaviour of req.readlines() when a size hint was provided. Previously, it would
always return a single line when a size hint was provided.

• (MODPYTHON-180) Publisher would wrongly output a warning about nothing to publish ifreq.write() or
req.sendfile() used and data not flushed, and then published function returnedNone.

• (MODPYTHON-181) Fixed memory leak when modpython handlers are defined for more than one phase at
the same time.

• (MODPYTHON-182) Fixed memory leak in req.readline().

• (MODPYTHON-184) Fix memory leak in apache.make table() . This was used by
util.FieldStorage class so affected all code using forms.

• (MODPYTHON-185) Fixed segfault in psp.parsestring(srcstring) when srcstring is empty.

• (MODPYTHON-187) Table objects could crash in various ways when the value of an item was NULL. This
could occur forSCRIPT FILENAMEwhen thereq.subprocess env table was accessed in the post read
request handler phase.

• (MODPYTHON-189) Fixed representation returned by callingrepr() on a table object.

• (MODPYTHON-191) Session class will no longer accept a normal cookie if a signed cookie was expected.

• (MODPYTHON-194) Fixed potential memory leak due to not clearing the state of thread state objects before
deleting them.

• (MODPYTHON-195) Fix potential Win32 resource leaks in parent Apache process when process restarts occur.

• (MODPYTHON-198) Python 2.5 broke nested auth / access / auth realm in
mod python.publisher.

• (MODPYTHON-200) Fixed problem whereby signed and marshalled cookies could not be used at the same
time. When expecting marshalled cookie, any signed, but not marshalled cookies will be returned as normal
cookies.

93

94

APPENDIX

B

Changes from Version (3.2.8)

New Features

• (MODPYTHON-78) Added support for Apache 2.2.

• (MODPYTHON-94) New req.is https() and req.ssl var lookup() methods. These communi-
cate direct with the Apache modssl module, allowing it to be determined if the connection is using SSL/TLS
and what the values of internal ssl variables are.

• (MODPYTHON-131) The directory used for mutex locks can now be specified at at compile
time using ./configure --with-mutex-dir value or at run time with PythonOption
mod python.mutex directory value .

• (MODPYTHON-137) New req.server.get options() method. This returns the subset of Python op-
tions set at global scope within the Apache configuration. That is, outside of the context of any VirtualHost,
Location, Directory or Files directives.

• (MODPYTHON-145) The number of mutex locks can now be specified at run time withPythonOption
mod python.mutex locks value .

• (MODPYTHON-172) Fixed three memory leaks that were found inapachemodule.parseqsl, req.readlines and
util.cfgtree walk.

Improvements

• (MODPYTHON-77) Third party C modules that use the simplified API for the Global Interpreter Lock (GIL),
as described in PEP 311, can now be used. The only requirement is that such modules can only be used in the
context of the ‘main interpreter ’.

• (MODPYTHON-119) DbmSession unit test no longer uses the default directory for the dbm file, so the test will
not interfer with the user’s current apache instance.

• (MODPYTHON-158) Added additional debugging and logging output for where modpython cannot initialise
itself properly due to Python or modpython version mismatches or missing Python module code files.

Bug Fixes

• (MODPYTHON-84) Fixed request.sendfile() bug for symlinked files on Win32.

• (MODPYTHON-122) Fixed configure problem when using bash 3.1.x.

• (MODPYTHON-173) Fixed DbmSession to create db file with mode 0640.

95

96

APPENDIX

C

Changes from Version (3.2.7)

Security Fix

• (MODPYTHON-135) Fixed possible directory traversal attack in FileSession. The session id is now checked to
ensure it only contains valid characters. This check is performed for all sessions derived from the BaseSession
class.

97

98

APPENDIX

D

Changes from Version (3.1.4)

New Features

• Newapache.register cleanup() method.

• Newapache.exists config define() method.

• New file-based session manager class.

• Session cookie name can be specified.

• The maximum number of mutexes modpython uses for session locking can now be specifed at compile time
usingconfigure --with-max-locks .

• New a version attribute in modpython module.

• New test handlertesthandler.py has been added.

Improvements

• Autoreload of a module usingapache.import module() now works if modification time for the module
is different from the file. Previously, the module was only reloaded if the the modification time of the file was
more recent. This allows for a more graceful reload if a file with an older modification time needs to be restored
from backup.

• Fixed the publisher traversal security issue

• Objects hierarchy a la CherryPy can now be published.

• mod python.c now logs reason for a 500 error

• Calls toPyErr Print in mod python.c are now followed byfflush()

• Using an empty value with PythonOption will unset a PythonOption key.

• req.path info is now a read/write member.

• Improvements to FieldStorage allow uploading of large files. Uploaded files are now streamed to disk, not to
memory.

• Path to flex is now discovered at configuration time or can be specifed usingconfigure
--with-flex=/path/to/flex .

• sys.argv is now initialized to["mod python"] so that modules like numarray and pychart can work
properly.

99

Bug Fixes

• Fixed memory leak which resulted from circular references starting from the request object.

• Fixed memory leak resulting from multiple PythonOption directives.

• Fixed Multiple/redundant interpreter creation problem.

• Cookie attributes with attribute names prefixed with $ are now ignored. See Section 4.7 for more information.

• Bug in setting up of configdir from Handler directives fixed.

• mod python.publisher will now support modules with the same name but in different directories

• Fixed continual reloading of modules problem

• Fixed big marshalled cookies error.

• Fixed mod python.publisher extension handling

• mod python.publisher default index file traversal

• mod python.publisher loading wrong module and giving no warning/error

• apply fs data() now works with ”new style” objects

• File descriptor fd closed afterap send fd() in req sendfile()

• Bug in mem cleanup in MemorySession fixed.

• Fixed bug in apache. global lock() which could cause a segfault if the lock index parameter is greater
number of mutexes created at modpython startup.

• Fixed bug wherelocal ip and local host in connection object were returningremote ip and
remote host instead

• Fixed install dso Makefile rule so it only installs the dso, not the python files

• Potential deadlock in psp cache handling fixed

• Fixed bug where sessions are used outside ¡Directory¿ directive.

• Fixed compile problem on IRIX.ln -s requires both TARGET and LINKNAME on IRIX. ie. ln -s
TARGET LINK NAME

• Fixed./configure problem on SuSE Linux 9.2 (x86-64). Python libraries are in lib64/ for this platform.

• Fixed req.sendfile() problem wheresendfile(filename) sends the incorrect number of bytes
when filename is a symlink.

• Fixed problem where util.FieldStorage was not correctly checking the mime types of POSTed entities

• Fixedconn.local addr andconn.remote addr for a better IPv6 support.

• Fixed psp parser.l to properly escapebackslash-n , backslash-t andbackslash-r character
sequences.

• Fixed segfault bug when accessing some request object members (allowedmethods, allowedxmethods, con-
tent languages) and some server object members (names, wildnames).

• Fixed request.addhandler() segfault bug when adding a handler to an empty handler list.

• Fixed PythonAutoReload directive so that AutoReload can be turned off.

• Fixed connection object read() bug on FreeBSD.

• Fixed potential buffer corruption bug in connection object read().

100 Appendix D. Changes from Version (3.1.4)

APPENDIX

E

Changes from Previous Major Version
(2.x)

• Mod python 3.0 no longer works with Apache 1.3, only Apache 2.x is supported.

• Mod python no longer works with Python versions less than 2.2.1

• Mod python now supports Apache filters.

• Mod python now supports Apache connection handlers.

• Request object supports internalredirect().

• Connection object has read(), readline() and write().

• Server object has getconfig().

• Httpdapi handler has been deprecated.

• Zpublisher handler has been deprecated.

• Username is now in req.user instead of req.connection.user

101

102

INDEX

Symbols
./configure, 6

--with-apxs, 6
--with-flex, 7
--with-max-locks, 6
--with-mutex-dir , 6
--with-python-src, 7
--with-python , 6

apache
module, 24

A
aborted (connection attribute), 42
add() (table method), 33
add common vars() (request method), 33
add cookie() (in module Cookie), 51
add field() (FieldStorage method), 47
add handler() (request method), 33
add input filter() (request method), 33
add output filter() (request method), 34
allow methods()

in module apache, 30
request method, 34

allowed (request attribute), 39
allowed methods (request attribute), 39
allowed xmethods (request attribute), 39
ap auth type (request attribute), 40
apache (extension module),23
apache configuration

LoadModule, 8
mutex directory, 8
mutex locks, 8

apply data() (PSPInterface method), 61
apxs, 6
args (request attribute), 41
assbackwards (request attribute), 38
auth name() (request method), 34
AUTH TYPE, 40
auth type() (request method), 34

B
base server (connection attribute), 42
BaseSession (class in Session), 54
bytes sent (request attribute), 39

C
canonical filename (request attribute), 40
CGI, 85
Changes from

version 2.x, 101
version 3.1.4, 99
version 3.2.10, 89
version 3.2.7, 97
version 3.2.8, 95

chunked (request attribute), 39
cleanup() (BaseSession method), 55
clear() (FieldStorage method), 47
clength (request attribute), 39
close() (filter method), 43
closed (filter attribute), 43
compiling

mod python, 5
config tree() (in module apache), 31
connection

handler, 23
object, 41

connection (request attribute), 38
construct url() (request method), 34
content encoding (request attribute), 40
content languages (request attribute), 40
content type (request attribute), 40
Cookie

class in Cookie, 50
extension module,50

created() (BaseSession method), 55

D
DbmSession (class in Session), 55
defn line number (server attribute), 45
defn name (server attribute), 44
delete() (BaseSession method), 55

103

disable() (filter method), 43
discard request body() (request method), 34
display code() (PSP method), 60
disposition (Field attribute), 49
disposition options (Field attribute), 49
document root() (request method), 34
double reverse (connection attribute), 43

E
environment variables

AUTH TYPE, 40
PATH INFO, 41
PATH, 6
QUERY ARGS, 41
REMOTE ADDR, 42
REMOTE HOST, 42
REMOTE IDENT, 42
REMOTE USER, 40
REQUEST METHOD, 38
SERVER NAME, 45
SERVER PORT, 45
SERVER PROTOCOL, 38

eos sent (request attribute), 41
err headers out (request attribute), 39
error fname (server attribute), 45
exists config define() (in module apache),

31
expecting 100 (request attribute), 39

F
Field (class in util), 49
FieldStorage (class in util), 46
file (Field attribute), 49
filename

Field attribute, 49
request attribute, 40

FileSession (class in Session), 56
filter

handler, 22
object, 43

finfo (request attribute), 41
flex, 6
flush()

filter method, 43
request method, 37

G
get() (FieldStorage method), 47
get basic auth pw() (request method), 34
get config()

request method, 34
server method, 44

get cookie() (in module Cookie), 52
get cookies() (in module Cookie), 52

get options()
request method, 35
server method, 44

get remote host() (request method), 34
getfirst() (FieldStorage method), 47
getlist() (FieldStorage method), 47

H
handler, 14

connection, 23
filter, 22
request, 20

handler
filter attribute, 44
request attribute, 40

has key() (FieldStorage method), 47
header only (request attribute), 38
headers in (request attribute), 39
headers out (request attribute), 39
hostname (request attribute), 38
httpdapi, 101
Httpdapy, 101

I
id() (BaseSession method), 55
id (connection attribute), 43
import module() (in module apache), 24
init lock() (BaseSession method), 55
install dso

make targets, 7
install py lib

make targets, 7
installation

UNIX, 5
internal redirect() (request method), 35
interpreter

apache attribute, 32
request attribute, 40

invalidate() (BaseSession method), 55
is https() (request method), 35
is input (filter attribute), 44
is new() (BaseSession method), 54
is virtual (server attribute), 45
items() (FieldStorage method), 47

K
keep alive (server attribute), 45
keep alive max (server attribute), 45
keep alive timeout (server attribute), 45
keepalive (connection attribute), 42
keepalives (connection attribute), 43
keys() (FieldStorage method), 47

104 Index

L
last accessed() (BaseSession method), 55
libpython.a, 6
limit req fields (server attribute), 45
limit req fieldsize (server attribute), 45
limit req line (server attribute), 45
list (FieldStorage attribute), 47
load() (BaseSession method), 55
LoadModule

apache configuration, 8
local addr (connection attribute), 42
local host (connection attribute), 43
local ip (connection attribute), 43
lock() (BaseSession method), 55
log error()

connection method, 41
in module apache, 24
request method, 35
server method, 44

loglevel (server attribute), 45

M
mailing list

mod python, 5
main (request attribute), 38
main server (apache attribute), 32
make targets

install dso, 7
install py lib, 7

make table() (in module apache), 31
MarshalCookie (class in Cookie), 51
meets conditions() (request method), 35
MemorySession (class in Session), 57
method (request attribute), 38
method number (request attribute), 38
mod python

compiling, 5
mailing list, 5

mod python.so, 8
module

apache, 24
mpm query() (in module apache), 31
mtime (request attribute), 39
mutex directory

apache configuration, 8
mutex locks

apache configuration, 8

N
name

Field attribute, 49
filter attribute, 43

names (server attribute), 45

next (request attribute), 38
no cache (request attribute), 40
no local copy (request attribute), 40
notes

connection attribute, 43
request attribute, 39

O
object

connection, 41
filter, 43
request, 20
server, 44
table, 32

order
phase, 64

P
parse()

Cookie method, 51
in module psp, 61
SignedCookie method, 51

parse qs() (in module util), 49
parse qsl() (in module util), 49
parsed uri (request attribute), 41
parsestring() (in module psp), 61
pass on() (filter method), 43
PATH, 6
path (server attribute), 45
PATH INFO, 41
path info (request attribute), 40
pathlen (server attribute), 45
phase

order, 64
phase (request attribute), 39
port (server attribute), 45
prev (request attribute), 38
proto num (request attribute), 38
protocol (request attribute), 38
proxyreq (request attribute), 38
PSP, 84
PSP(class in psp), 59
psp (extension module),58
PSPInterface (class in psp), 60
Python*Handler Syntax, 63
python-src, 7
PythonAccessHandler, 65
PythonAuthenHandler, 65
PythonAuthzHandler, 66
PythonAutoReload, 71
PythonCleanupHandler, 67
PythonConnectionHandler, 68
PythonDebug, 69
PythonEnablePdb, 69

Index 105

PythonFixupHandler, 66
PythonHandler, 67
PythonHandlerModule, 71
PythonHeaderParserHandler, 64
PythonImport, 69
PythonInitHandler, 65
PythonInputFilter, 67
PythonInterpPerDirectory, 70
PythonInterpreter, 71
PythonLogHandler, 67
PythonOptimize, 72
PythonOption, 72
PythonOutputFilter, 68
PythonPath, 73
PythonPostReadRequestHandler, 64
PythonPythonInterpPerDirective, 70
PythonTransHandler, 64
PythonTypeHandler, 66

Q
QUERY ARGS, 41

R
range (request attribute), 39
read()

connection method, 42
filter method, 43
request method, 36

read body (request attribute), 39
read chunked (request attribute), 39
read length (request attribute), 39
readline()

connection method, 42
filter method, 43
request method, 36

readlines() (request method), 36
redirect()

in module util, 50
PSPInterface method, 61

register cleanup()
in module apache, 31
request method, 36
server method, 44

register input filter() (request method),
36

register output filter() (request method),
37

remaining (request attribute), 39
REMOTE ADDR, 42
remote addr (connection attribute), 42
REMOTE HOST, 42
remote host (connection attribute), 42
REMOTE IDENT, 42
remote ip (connection attribute), 42

remote logname (connection attribute), 42
REMOTE USER, 40
req, 20
req (filter attribute), 44
request, 33

handler, 20
object, 20

REQUEST METHOD, 38
request time (request attribute), 38
requires() (request method), 36
RFC

RFC 1867, 49
RFC 2109, 50
RFC 2964, 50
RFC 2965, 50

run() (PSP method), 60

S
save() (BaseSession method), 55
sendfile() (request method), 37
sent bodyct (request attribute), 39
server

object, 44
server (request attribute), 38
server admin (server attribute), 45
server hostname (server attribute), 45
SERVER NAME, 45
SERVER PORT, 45
SERVER PROTOCOL, 38
server root() (in module apache), 31
Session() (in module Session), 53
Session (extension module),53
set content length() (request method), 38
set error page() (PSPInterface method), 60
set etag() (request method), 37
set last modified() (request method), 37
set timeout() (BaseSession method), 55
SignedCookie (class in Cookie), 51
ssl var lookup() (request method), 37
stat() (in module apache), 31
status (request attribute), 38
status line (request attribute), 38
subprocess env (request attribute), 39

T
table, 32

object, 32
table (class in apache), 32
the request (request attribute), 38
timeout() (BaseSession method), 55
timeout (server attribute), 45
type (Field attribute), 49
type options (Field attribute), 49

106 Index

U
UNIX

installation, 5
unlock() (BaseSession method), 55
unparsed uri (request attribute), 40
update mtime() (request method), 37
uri (request attribute), 40
used path info (request attribute), 41
user (request attribute), 40
util (extension module),45

V
value (Field attribute), 49
version 2.x

Changes from, 101
version 3.1.4

Changes from, 99
version 3.2.10

Changes from, 89
version 3.2.7

Changes from, 97
version 3.2.8

Changes from, 95
vlist validator (request attribute), 40

W
wild names (server attribute), 45
write()

connection method, 42
filter method, 43
request method, 37

Z
ZPublisher, 101

Index 107

	1 Introduction
	1.1 Performance
	1.2 Flexibility
	1.3 History

	2 Installation
	2.1 Prerequisites
	2.2 Compiling
	2.2.1 Running ./configure
	2.2.2 Running make

	2.3 Installing
	2.3.1 Running make install
	2.3.2 Configuring Apache

	2.4 Testing
	2.5 Troubleshooting

	3 Tutorial
	3.1 A Quick Start with the Publisher Handler
	3.2 Quick Overview of how Apache Handles Requests
	3.3 So what Exactly does Mod-python do?
	3.4 Now something More Complicated - Authentication
	3.5 Your Own 404 Handler

	4 Python API
	4.1 Multiple Interpreters
	4.2 Overview of a Request Handler
	4.3 Overview of a Filter Handler
	4.4 Overview of a Connection Handler
	4.5 apache -- Access to Apache Internals.
	4.5.1 Functions
	4.5.2 Attributes
	4.5.3 Table Object (mp_table)
	4.5.4 Request Object
	Request Methods
	Request Members

	4.5.5 Connection Object (mp_conn)
	Connection Methods
	Connection Members

	4.5.6 Filter Object (mp_filter)
	Filter Methods
	Filter Members

	4.5.7 Server Object (mp_server)
	Server Methods
	Server Members

	4.6 util -- Miscellaneous Utilities
	4.6.1 FieldStorage class
	4.6.2 FieldStorage Examples
	4.6.3 Field class
	4.6.4 Other functions

	4.7 Cookie -- HTTP State Management
	4.7.1 Classes
	4.7.2 Functions
	4.7.3 Examples

	4.8 Session -- Session Management
	4.8.1 Classes
	4.8.2 Examples

	4.9 psp -- Python Server Pages

	5 Apache Configuration Directives
	5.1 Request Handlers
	5.1.1 Python*Handler Directive Syntax
	5.1.2 PythonPostReadRequestHandler
	5.1.3 PythonTransHandler
	5.1.4 PythonHeaderParserHandler
	5.1.5 PythonInitHandler
	5.1.6 PythonAccessHandler
	5.1.7 PythonAuthenHandler
	5.1.8 PythonAuthzHandler
	5.1.9 PythonTypeHandler
	5.1.10 PythonFixupHandler
	5.1.11 PythonHandler
	5.1.12 PythonLogHandler
	5.1.13 PythonCleanupHandler

	5.2 Filters
	5.2.1 PythonInputFilter
	5.2.2 PythonOutputFilter

	5.3 Connection Handler
	5.3.1 PythonConnectionHandler

	5.4 Other Directives
	5.4.1 PythonEnablePdb
	5.4.2 PythonDebug
	5.4.3 PythonImport
	5.4.4 PythonInterpPerDirectory
	5.4.5 PythonInterpPerDirective
	5.4.6 PythonInterpreter
	5.4.7 PythonHandlerModule
	5.4.8 PythonAutoReload
	5.4.9 PythonOptimize
	5.4.10 PythonOption
	5.4.11 PythonPath

	6 Server Side Includes
	6.1 Overview of SSI
	6.2 Using Python Code
	6.3 Scope of Global Data
	6.4 Pre-propulating Globals
	6.5 Conditional Expressions
	6.6 Enabling INCLUDES Filter

	7 Standard Handlers
	7.1 Publisher Handler
	7.1.1 Introduction
	7.1.2 The Publishing Algorithm
	Traversal
	Argument Matching and Invocation
	Authentication

	7.1.3 Form Data

	7.2 PSP Handler
	7.3 CGI Handler

	8 Security
	A Changes from Version (3.2.10)
	B Changes from Version (3.2.8)
	C Changes from Version (3.2.7)
	D Changes from Version (3.1.4)
	E Changes from Previous Major Version (2.x)
	Index

