Mod_ python Manual
Release 3.2.7

Gregory Trubetskoy

February 17, 2004

E-mail: grisha@apache.org

Copyright (© 2004 Apache Software Foundation.

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS I1S” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

Abstract

Mod_python allows embedding Python within the Apache server for a considerable boost in performance and added
flexibility in designing web based applications.

This document aims to be the only necessary and authoritative source of information abaplthod, usable as a
comprehensive reference, a user guide and a tutorial all-in-one.

See Also:

Python Language Web Site
(http://www.python.org/)
for information on the Python language

Apache Server Web Site
(http://nttpd.apache.org/)
for information on the Apache server

CONTENTS

Introduction 1
1.1 Performance. e e 1
1.2 Flexibility o e 1
1.3 HistOry e e e e 1
Installation 3
2.1 PrerequUISIteS. o o e e e e e 3
22 Compiling 3
23 Installing 5
24 Testingo e e 5
2.5 Troubleshooting. e e 6
Tutorial 9
3.1 A Quick Start with the PublisherHandler. 9
3.2 Quick Overview of how Apache Handles Requests. 11
3.3 Sowhat Exactly does Mod-pythondo?. e 11
3.4 Now something More Complicated - Authentication. 13
3.5 YourOwndO04 Handler. e e 15
Python API 17
4.1 Multiple Interpreters. e e e e e e e e e e 17
4.2 OverviewofaRequestHandler. 17
4.3 Overviewofa FilterHandler. e 20
4.4 OverviewofaConnectionHandler 21
45 apache —AccesstoApachelnternals.. 21
4.6 util —Miscellaneous Utilities. e 34
4.7 Cookie —HTTP State Management i 37
4.8 Session —Session Management. e e e e e e e 40
4.9 psp —PythonServerPages 44
Apache Configuration Directives 49
5.1 RequestHandlers. e 49
5.2 Filters. . . . e 53
5.3 ConnectionHandler. e 53
5.4 OtherDireCtivesS. o o o 54
Standard Handlers 59
6.1 PublisherHandler. e 59
6.2 PSP Handler. e 62
6.3 CGlHandler. e 63

A Changes from Version (3.1.4)
B Changes from Previous Major Version (2.x)

Index

65

67

69

CHAPTER
ONE

Introduction

1.1 Performance

One of the main advantages of mgaython is the increase in performance over traditional CGI. Below are results of

a very crude test. The test was done on a 1.2GHz Pentium machine running Red Hat Limkixwa3. used to poll 4

kinds of scripts, all of which imported the standard cgi module (because this is how a typical Python cgi script begins),
then output a single wordHello! . The results are based on 10000 requests with concurrency of 1.

Standard CGl: 23 requests/s

Mod_python cgihandler: 385 requests/s

Mod_python publisher: 476 requests/s

Mod_python handler: 1203 requests/s
1.2 Flexibility

Apache processes requests in phases (e.g. read the request, parse headers, check access, etc.). These phases can
be implemented by functions called handlers. Traditionally, handlers are written in C and compiled into Apache
modules. Modpython provides a way to extend Apache functionality by writing Apache handlers in Python. For a
detailed description of the Apache request processing process, seestiee API Notesas well as thélod_python

- Integrating Python with Apachgaper.

To ease migration from CGl, a standard megithon handler is provided that simulates the CGI environment allowing
a user to run legacy scripts under m@gthon with no changes to the code (in most cases).

See Also:

http://dev.apache.org/
Apache Developer Resources

http://www.modpython.org/python10/
Mod_Python - Integrating Python with Apache, presented at Python 10

1.3 History

Mod_python originates from a project callétitpdapy(1997). For a long time Httpdapy was not called mpygthon
because Httpdapy was not meant to be Apache-specific. Hitpdapy was designed to be cross-platform and in fact was

initially written for the Netscape server (back then it was called Nsapy (1997).

This excerpt from the Httpdapy README file describes well the challenges and the solution provided by embedding
Python within the HTTP server:

While developing my first WWW applications a few years back, | found
that using CGI for programs that need to connect to relational
databases (commercial or not) is too slow because every hit requires
loading of the interpreter executable which can be megabytes in size,
any database libraries that can themselves be pretty big, plus, the
database connection/authentication process carries a very significant
overhead because it involves things like DNS resolutions, encryption,
memory allocation, etc.. Under pressure to speed up the application, |
nearly gave up the idea of using Python for the project and started
researching other tools that claimed to specialize in www database
integration. | did not have any faith in MS's ASP; was quite

frustrated by Netscape LiveWire’s slow performance and bugginess; Cold
Fusion seemed promising, but | soon learned that writing in html-like
tags makes programs as readable as assembly. Same is true for

PHP. Besides, | *really* wanted to write things in Python.

Around the same time the Internet Programming With Python book came
out and the chapter describing how to embed Python within Netscape
server immediately caught my attention. | used the example in my
project, and developed an improved version of what | later called

Nsapy that compiled on both Windows NT and Solaris.

Although Nsapy only worked with Netscape servers, it was a very
intelligent generic OO design that, in the spirit of Python, that lent
itself for easy portability to other web servers.

Incidently, the popularity of Netscape’'s servers was taking a turn
south, and so | set out to port Nsapy to other servers starting with
the most popular one, Apache. And so from Nsapy was born Httpdapy.

...continuing this saga, yours truly later learned that writing Httpdapy for every server is a task a little bigger and less
interesting than | originally imagined.

Instead, it seemed like providing a Python counterpart to the popular Perl Apache extensigrenhtitht would give
Python users the same (or better) capability would be a much more exciting thing to do.

And so it was done. The first release of mpgthon happened in May of 2000.

2 Chapter 1. Introduction

CHAPTER
TWO

Installation

Note: By far the best place to get help with installation and other issues is the pgtdtbn mailing list. Please take
a moment to join the madpython mailing list by sending an e-mail with the woklibscribe ’ in the subject to
mod_python-request@modpython.org.

2.1 Prerequisites

e Python 2.2.1 or later. Earlier versions of Python will not work.

e Apache 2.0.40 or later (For Apache 1.3.x, use mmgdhon version 2.7.x).

In order to compile modpython you will need to have the include files for both Apache and Python, as well as the
Python library installed on your system. If you installed Python and Apache from source, then you already have
everything needed. However, if you are using prepackaged software (e.g. Red Hat Linux RPM, Debian, or Solaris
packages from sunsite, etc) then chances are, you have just the binaries and not the sources on your system. Often, the
Apache and Python include files and libraries necessary to compile pytitbn are part of separate “development”
package. If you are not sure whether you have all the necessary files, either compile and install Python and Apache
from source, or refer to the documentation for your system on how to get the development packages.

2.2 Compiling

There are two ways in which modules can be compiled and linked to Apache - statically, or as a DSO (Dynamic Shared
Object).

DSOis a more popular approach nowadays and is the recommended one fopyttomh. The module gets compiled
as a shared library which is dynamically loaded by the server at run time.

The advantage of DSO is that a module can be installed without recompiling Apache and used as needed. A more
detailed description of the Apache DSO mechanism is availablepathttpd.apache.org/docs-2.0/dso.html.

At this time only DSO is supported by mguython.

Staticlinking is an older approach. With dynamic linking available on most platforms it is used less and less. The
main drawback is that it entails recompiling Apache, which in many instances is not a favorable option.

2.2.1 Running ./configure

The ./configure script will analyze your environment and create custom Makefiles particular to your system. Aside
from all the standard autoconf stuffconfigure does the following:

e Finds out whether a program callagxsis available. This program is part of the standard Apache distribution,
and is necessary for DSO compilation. If apxs cannot be found in your PATH/osrifocal/apache/bin, DSO
compilation will not be available.

You can manually specify the location of apxs by using-théth-apxs option, e.g.:

$./configure --with-apxs=/usr/local/apache/bin/apxs

It is recommended that you specify this option.
e Checks your Python version and attempts to figure out whigpgthon is by looking at various parameters
compiled into your Python binary. By default, it will use thgthon program found in your PATH.

If the first Python binary in the path is not suitable or not the one desired for_pyddon, you can specify an
alternative location with the-with-python option, e.g:

$./configure --with-python=/usr/local/bin/python2.3

e Sets the maximum number of locks reserved by npydhon.

The mutexes used for locking are a limited resource on some systems. Increasing the maximum number of
locks may increase performance when using session locking. The default is 8. A reasonable number for higher
performance would be 32. Usavith-max-locks option, e.qg:

$./configure --with-max-locks=32

New in version 3.2.0

e Attempts to locatdlex and determine its version. fiex cannot be found in your PATIdonfigure will fail. If
the wrong version is foundonfigure will generate a warning. You can generally ignore this warning unless you
need to re-creatsrc/psp_parser.c.

The parser used by psp (See 4.9) is written in C generated fisiagrhis requires a reentrant versionfex

which at this time is 2.5.31. Most platforms however ship with version 2.5.4 which is not suitable, so a pre-
generated copy of psparser.c is included with the source. If you do need to comgpiépsp_parser.c you

must get the corredtex version.

If the first flex binary in the path is not suitable or not the one desired you can specify an alternative location
with the--with-flex option, e.qg:

$./configure --with-flex=/usr/local/bin/flex

New in version 3.2.0

e The python source is required to build the mpgthon documentation.

You can safely ignore this option unless you want to build the the documentation. If you want to build the
documentation, specify the path to your python source with-thigh-python-src option, eg.

$./configure --with-python-src=/usr/src/python2.3

Chapter 2. Installation

New in version 3.2.0

2.2.2 Running make

e To start the build process, simply run

$ make

2.3 Installing

2.3.1 Running make install
e This part of the installation needs to be done as root.

$ su
make install

— This will simply copy the library into your Apachibexec directory, where all the other modules are.
— Lastly, it will install the Python libraries isite-packages and compile them.

NB: If you wish to selectively install just the Python libraries or the DSO (which may not always require
superuser privileges), you can use the followmngke targets:install _py_lib andinstall_dso

2.3.2 Configuring Apache
¢ If you compiled mod python as a DSO, you will need to tell Apache to load the module by adding the following
line in the Apache configuration file, usually calletthd.conf or apache.conf:

LoadModule python_module libexec/mod_python.so

The actual path tanod_python.so may vary, but make install should report at the very end exactly where
mod_python.sowas placed and how tHepadModule directive should appear.

2.4 Testing

Warning : These instructions are meant to be followed if you are using_mpgthon 3.x or later. If you are using
mod_python 2.7.x (hamely, if you are using Apache 1.3.x), please refer to the proper documentation.

Make some directory that would be visible on your web site, for example, htdocs/test.

Add the following Apache directives, which can appear in either the main server configuration fitecer
cess. If you are going to be using thétaccess file, you will not need the<Directory> tag below (the
directory then becomes the one in which th&ccess file is located), and you will need to make sure the

2.3. Installing

AllowOverride directive applicable to this directory has at le&delnfo specified. (The default is
None, which will not work.)

<Directory /some/directory/htdocs/test>
AddHandler mod_python .py
PythonHandler mptest
PythonDebug On

</Directory>

(Substitute'some/directory above for something applicable to your system, usually your Apache ServerRoot)

3. This redirects all requests for URLs ending.py to the mod python handler. madopython receives those
requests and looks for an appropriate PythonHandler to handle them. Here, there is a single PythonHandler
directive defining mptest as the python handler to use. We’'ll see next how this python handler is defined.

4. Atthis time, if you made changes to the main configuration file, you will need to restart Apache in order for the
changes to take effect.

5. Edit mptest.py file in the htdocs/test directory so that is has the following lines (be careful when cutting and
pasting from your browser, you may end up with incorrect indentation and a syntax error):

from mod_python import apache

def handler(req):
reg.content_type = ’text/plain’
reg.write("Hello World!")
return apache.OK

6. Point your browser to the URL referring to theptest.py; you should seeHello World! . If you didn’t -
refer to the troubleshooting section next.

7. Note that according to the configuration written above, you can also point your browser to any URL ending in
.py in the test directory. You can for example point your browsetets/foobar.py and it will be handled by
mptest.py. That's because you explicitely set the handler to alwaysitest, whatever the requested file was.

If you want to have many handler files namieghdlerl.py, handler2.py and so on, and have them accessible
on /test’/handlerl.py, /test/handler2.py, etc., then you have to use a higher level handler system such as the
mod_python publisher (see 3.1), mpservlets or Vampire. Those are just speciapgtbdn handler that know

how to map requests to a dynamically loaded handler.

8. If everything worked well, move on to Chapterijtorial.

See Also:

http://home.comcast.net/ d.popowich/mpserviets
mpservlets

http://www.dscpl.com.au/projects/vampire
Vampire

2.5 Troubleshooting

There are a few things you can try to identify the problem:

e Carefully study the error output, if any.

6 Chapter 2. Installation

e Check the server error log file, it may contain useful clues.

e Try running Apache from the command line in single process mode:

Jhttpd -X

This prevents it from backgrounding itself and may provide some useful information.

e Beginning with modpython 3.2.0, you can use the mqguython.testhandler to diagnose your configuration.
Add this to yourhttpd.conf file :

<Location /mpinfo>
SetHandler mod_python
PythonHandler mod_python.testhandler
</Location>

Now point your browser to thénpinfo URL (e.g. http://localhost/mpinfo) and note down the information given.
This will help you reporting your problem to the moglython list.

e Ask on the modpython list. Make sure to provide specifics such as:

— Mod_python version.

— Your operating system type, name and version.

— Your Python version, and any unusual compilation options.
— Your Apache version.

— Relevant parts of the Apache config, .htaccess.

— Relevant parts of the Python code.

2.5. Troubleshooting 7

CHAPTER
THREE

Tutorial

So how can | make this work?

This is a quick guide to getting started with mguython programming once you have it installed. Thigig an
installation manual!

It is also highly recommended to read (at least the top part of) SectiBytthon APlafter completing this tutorial.

3.1 A Quick Start with the Publisher Handler

This section provides a quick overview of the Publisher handler for those who would like to get started without getting
into too much detail. A more thorough explanation of how mpgthon handlers work and what a handler actually is
follows on in the later sections of the tutorial.

The publisher handler is provided as one of the standard nmdhon handlers. To get the publisher handler
working, you will need the following lines in your config:

AddHandler mod_python .py
PythonHandler mod_python.publisher
PythonDebug On

The following example will demonstrate a simple feedback form. The form will ask for the name, e-mail address
and a comment and construct an e-mail to the webmaster using the information submitted by the user. This simple
application consists of two filesorm.html - the form to collect the data, ariarm.py - the target of the form’s action.

Here is the html for the form:

<html>
Please provide feedback below:
<p>
<form action="form.py/email" method="POST">

Name: <input type="text" name="name">

Email: <input type="text" name="email">

Comment: <textarea name="comment" rows=4 cols=20></textarea>

<input type="submit">

</form>
</html>

Note theaction element of the<form> tag points toform.py/emalil . We are going to create a file called
form.py, like this:

import smtplib

WEBMASTER = "webmaster" # webmaster e-mail
SMTP_SERVER = "localhost" # your SMTP server

def email(req, name, email, comment):
make sure the user provided all the parameters
if not (hame and email and comment):
return "A required parameter is missing, \

please go back and correct the error"

create the message text

msg = "™\
From: %s
Subject: feedback
To: %s

| have the following comment:

%s

Thank You,

%s

""" % (email, WEBMASTER, comment, hame)

send it out

conn = smtplib.SMTP(SMTP_SERVER)
conn.sendmail(email, [WEBMASTER], msg)
conn.quit()

provide feedback to the user
S = llllll\
<htmlI>

Dear %s,

Thank You for your kind comments, we
will get back to you shortly.

</html>"" % name

return s

When the user clicks the Submit button, the publisher handler will loagitigl function in theform module,
passing it the form fields as keyword arguments. It will also pass the request ohjeqt.as

Note that you do not have to haveq as one of the arguments if you do not need it. The publisher handler is smart
enough to pass your function only those arguments that it will accept.

The data is sent back to the browser via the return value of the function.

Even though the Publisher handler simplifies mpgthon programming a great deal, all the power of mpython
is still available to this program, since it has access to the request object. You can do all the same things you can
do with a “native” mod_python handler, e.g. set custom headersrei@headers _out , return errors by rais-

10 Chapter 3. Tutorial

ing apache.SERVER _ERRORexceptions, write or read directly to and from the client keg.write() and
reg.read() , etc.

Read Section 6.Publisher Handlerfor more information on the publisher handler.

3.2 Quick Overview of how Apache Handles Requests

If you would like delve in deeper into the functionality of mgaython, you need to understand what a handler is.

Apache processes requestphmses For example, the first phase may be to authenticate the user, the next phase to
verify whether that user is allowed to see a particular file, then (next phase) read the file and send it to the client. A
typical static file request involves three phases: (1) translate the requested URI to a file location (2) read the file and
send it to the client, then (3) log the request. Exactly which phases are processed and how varies greatly and depends
on the configuration.

A handleris a function that processes one phase. There may be more than one handler available to process a particular
phase, in which case they are called by Apache in sequence. For each of the phases, there is a default Apache handler
(most of which by default perform only very basic functions or do nothing), and then there are additional handlers
provided by Apache modules, such as mpgthon.

Mod_python provides every possible handler to Apache. Mndhon handlers by default do not perform any func-

tion, unless specifically told so by a configuration directive. These directives beginRyithon ' and end with
‘Handler ’(e.g. PythonAuthenHandler) and associate a phase with a Python function. So the main function of
mod_python is to act as a dispatcher between Apache handlers and Python functions written by a developer like you.

The most commonly used handlerRgthonHandler . It handles the phase of the request during which the actual
content is provided. Because it has no name, it is sometimes referred tgaseaashandler. The default Apache
action for this handler is to read the file and send it to the client. Most applications you will write will override this
one handler. To see all the possible handlers, refer to SectiopeEhe Directives

3.3 So what Exactly does Mod-python do?

Let’s pretend we have the following configuration:

<Directory /mywebdir>
AddHandler mod_python .py
PythonHandler myscript
PythonDebug On
</Directory>

NB: /mywebdir is an absolute physical path.

And let's say that we have a python program (Windows users: substitute forward slashes for backslashes)
‘Imywedir/myscript.py’ that looks like this:

from mod_python import apache
def handler(req):

reg.content_type = "text/plain”
req.write("Hello World!")

return apache.OK

3.2. Quick Overview of how Apache Handles Requests 11

Here is what's going to happen: TheddHandler directive tells Apache that any request for any file end-
ing with ‘.py’ in the ‘/mywebdir’ directory or a subdirectory thereof needs to be processed by pytdon. The
‘PythonHandler myscript " directive tells mod_ python to process the generic handler usingrthescript

script. The PythonDebug On ’ directive instructs modpython in case of an Python error to send error output to
the client (in addition to the logs), very useful during development.

When a request comes in, Apache starts stepping through its request processing phases calling handlers in
mod_python. The modpython handlers check whether a directive for that handler was specified in the configura-
tion. (Remember, it acts as a dispatcher.) In our example, no action will be taken hypwytiodn for all handlers

except for the generic handler. When we get to the generic handler, pytitbn will notice PythonHandler

myscript '’ directive and do the following:

1. If not already done, prepend the directory in whichRyghonHandler directive was found teys.path

2. Attempt to import a module by nanmayscript . (Note that ifmyscript was in a subdirectory of the
directory wherePythonHandler was specified, then the import would not work because said subdirectory
would not be in thesys.path . One way around this is to use package notation, eRythonHandler
subdir.myscript ")

3. Look for a function calledhandler in myscript
4. Call the function, passing it a request object. (More on what a request object is later)

5. At this point we're inside the script:

e from mod_python import apache

This imports the apache module which provides us the interface to Apache. With a few rare exceptions,
every mod_ python program will have this line.

e def handler(req):

This is ourhandlerfunction declaration. It is callechandler ' because modpython takes the name of

the directive, converts it to lower case and removes the waython ’. Thus ‘PythonHandler ' be-

comes handler . You could name it something else, and specify it explicitly in the directive using *

For example, if the handler function was callegpam’, then the directive would bePythonHandler
myscript::spam '

Note that a handler must take one argument - the request object. The request object is an object that
provides all of the information about this particular request - such as the IP of client, the headers, the URI,
etc. The communication back to the client is also done via the request object, i.e. there is no “response”
object.

reg.content_type = "text/plain”

This sets the content type ttekt/plain ". The default is usuallytext/html ’, but since our handler

doesn’t produce any htmlteéxt/plain " is more appropriatelmportant: you shouldalways make

sure this is sebefore any call to req.write ’. When you first call feq.write ', the response HTTP

header is sent to the client and all subsequent changes to the content type (or other HTTP headers) are
simply lost.

req.write("Hello World!")

This writes theHello World! ' string to the client. (Did | really have to explain this one?)

12 Chapter 3. Tutorial

return apache.OK

This tells Apache that everything went OK and that the request has been processed. If things
did not go OK, that line could be returapache.HTTP _INTERNAL_SERVERERROROor return
apache.HTTP _FORBIDDEN When things do not go OK, Apache will log the error and generate an
error message for the client.

Some food for thought: If you were paying attention, you noticed that the text above didn't specify that in
order for the handler code to be executed, the URL needs to refewdoript.py. The only requirement was

that it refers to apy file. In fact the name of the file doesn’t matter, and the file referred to in the URL
doesn’t have to exist. So, given the above configuratiottp://myserver/mywebdir/myscript.py "and
‘http://myserver/mywebdir/montypython.py " would give the exact same result. The important thing

to understand here is that a handler augments the server behaviour when processing a specific type of file, not an
individual file.

At this point, if you didn't understand the above paragraph, go back and read it again, until you do.

3.4 Now something More Complicated - Authentication

Now that you know how to write a primitive handler, let's try something more complicated.
Let's say we want to password-protect this directory. We want the login tegaa’, and the password to beggs .

First, we need to tell Apache to call oauthenticatiorhandler when authentication is needed. We do this by adding
thePythonAuthenHandler . So now our config looks like this:

<Directory /mywebdir>
AddHandler mod_python .py
PythonHandler myscript
PythonAuthenHandler myscript
PythonDebug On

</Directory>

Notice that the same script is specified for two different handlers. This is fine, because if you remembgsythrad
will look for different functions within that script for the different handlers.

Next, we need to tell Apache that we are using Basic HTTP authentication, and only valid users are allowed (this is
fairly basic Apache stuff, so we’re not going to go into details here). Our config looks like this now:

<Directory /mywebdir>
AddHandler mod_python .py
PythonHandler myscript
PythonAuthenHandler myscript
PythonDebug On
AuthType Basic
AuthName "Restricted Area"
require valid-user

</Directory>

Now we need to write an authentication handler functiomigscript.py’. A basic authentication handler would look
like this:

3.4. Now something More Complicated - Authentication 13

from mod_python import apache
def authenhandler(req):

pw = reg.get_basic_auth_pw()
user = req.user

if user == "spam" and pw == "eggs":
return apache.OK

else:
return apache.HTTP_UNAUTHORIZED

Let’s look at this line by line:

def authenhandler(req):

This is the handler function declaration. This one is cadlathenhandler because, as we already described
above, modpython takes the name of the directieythonAuthenHandler), drops the wordPython ’
and converts it lower case.

pw = req.get_basic_auth_pw()

This is how we obtain the password. The basic HTTP authentication transmits the password in base64 encoded
form to make it a little bit less obvious. This function decodes the password and returns it as a string. Note that
we have to call this function before obtaining the user name.

user = reg.user

This is how you obtain the username that the user entered.

if user == "spam" and pw == "eggs":
return apache.OK

We compare the values provided by the user, and if they are what we were expecting, we tell Apache to go
ahead and proceed by returniagache.OK . Apache will then consider this phase of the request complete,
and proceed to the next phase. (Which in this case woulthhdler() ifit'sa .py file).

else:
return apache.HTTP_UNAUTHORIZED

Else, we tell Apache to retutATTP_UNAUTHORIZERD the client, which usually causes the browser to pop a
dialog box asking for username and password.

14

Chapter 3. Tutorial

3.5 Your Own 404 Handler

In some cases, you may wish to return a 4684 TP_NOT_FOUNIDor other non-200 result from your handler. There
is a trick here. if you returtl TTP_NOT_FOUNDrom your handler, Apache will handle rendering an error page. This
can be problematic if you wish your handler to render it's own error page.

In this case, you need to seeq.status = apache.HTTP _NOT_FOUND render your page, and then
return(apache.OK)

from mod_python import apache

def handler(req):
if req.filename[-17:] == ’apache-error.html’:
make Apache report an error and render the error page
return(apache.HTTP_NOT_FOUND)
if req.filename[-18:] == ’handler-error.html’":
use our own error page
reg.status = apache.HTTP_NOT_FOUND
pagebuffer = 'Page not here. Page left, not know where gone.’
else:
use the contents of a file
pagebuffer = open(req.flename, 'r’).read()

fall through from the latter two above
reqg.write(pagebuffer)
return(apache.OK)

3.5. Your Own 404 Handler 15

16

CHAPTER
FOUR

Python API

4.1 Multiple Interpreters

When working with modpython, it is important to be aware of a feature of Python that is normally not used when
using the language for writing scripts to be run from command line. This feature is not available from within Python
itself and can only be accessed through@henguage API

Python C API provides the ability to creasebinterpreters A more detailed description of a subinterpreter is given

in the documentation for they_NewiInterpreter() function. For this discussion, it will suffice to say that each
subinterpreter has its own separate hamespace, not accessible from other subinterpreters. Subinterpreters are very
useful to make sure that separate programs running under the same Apache server do not interfere with one another.

At server start-up or madpython initialization time, modpython initializes an interpreter calleghain inter-

preter. The main interpreter contains a dictionary of subinterpreters. Initially, this dictionary is empty. With
every request, as needed, subinterpreters are created, and references to them are stored in this dictionary. The
dictionary is keyed on a string, also known iaserpreter name This name can be any string. The main in-
terpreter is namedmain _interpreter . The way all other interpreters are named can be controlled by
PythonlInterp* directives. Default behaviour is to name interpreters using the Apache virtual server name
(ServerName directive). This means that all scripts in the same virtual server execute in the same subinter-
preter, but scripts in different virtual servers execute in different subinterpreters with completely separate namespaces.
PythoninterpPerDirectory andPythonlInterpPerDirective directives alter the naming convention to

use the absolute path of the directory being accessed, or the directory in whieyillem*Handler ~ was encoun-

tered, respectivelyPythonlnterpreter can be used to force the interpreter name to a specific string overriding
any naming conventions.

Once created, a subinterpreter will be reused for subsequent requests. It is never destroyed and exists until the Apache
process dies.

You can find out the name of the interpreter under which you're running by peekieq.atterpreter
See Also:

Python C Language API
(http://www.python.org/doc/current/api/api.html)
Python C Language API

4.2 Overview of a Request Handler

A handleris a function that processes a particular phase of a request. Apache processes requests in phases - read the
request, process headers, provide content, etc. For every phase, it will call handlers, provided by either the Apache
core or one of its modules, such as megthon which passes control to functions provided by the user and written in
Python. A handler written in Python is not any different from a handler written in C, and follows these rules:

17

A handler function will always be passed a reference to a request object. (Throughout this manual, the request object
is often referred to by theeq variable.)

Every handler can return:

e apache.OK , meaning this phase of the request was handled by this handler and no errors occurred.

e apache.DECLINED , meaning this handler has not handled this phase of the request to completion and Apache
needs to look for another handler in subsequent modules.

e apache. HTTP_ERRORmeaning an HTTP error occurredTTP_ERRORcan be any of the following:

18 Chapter 4. Python API

HTTP_CONTINUE
HTTP_SWITCHING_PROTOCOLS
HTTP_PROCESSING

HTTP_OK

HTTP_CREATED
HTTP_ACCEPTED
HTTP_NON_AUTHORITATIVE
HTTP_NO_CONTENT
HTTP_RESET_CONTENT
HTTP_PARTIAL_CONTENT
HTTP_MULTI_STATUS
HTTP_MULTIPLE_CHOICES
HTTP_MOVED_PERMANENTLY
HTTP_MOVED_TEMPORARILY
HTTP_SEE_OTHER
HTTP_NOT_MODIFIED
HTTP_USE_PROXY
HTTP_TEMPORARY_REDIRECT
HTTP_BAD_REQUEST
HTTP_UNAUTHORIZED
HTTP_PAYMENT_REQUIRED
HTTP_FORBIDDEN
HTTP_NOT_FOUND
HTTP_METHOD_NOT_ALLOWED
HTTP_NOT_ACCEPTABLE

= 100
= 101
102

200
201
202
203
204
205
206
207
300
= 301
= 302
= 303

= 304
= 305
= 307

400

= 405
= 406

HTTP_PROXY_AUTHENTICATION_REQUIRED= 407

HTTP_REQUEST_TIME_OUT
HTTP_CONFLICT

HTTP_GONE
HTTP_LENGTH_REQUIRED
HTTP_PRECONDITION_FAILED
HTTP_REQUEST_ENTITY_TOO_LARGE
HTTP_REQUEST_URI_TOO_LARGE
HTTP_UNSUPPORTED_MEDIA TYPE
HTTP_RANGE_NOT_SATISFIABLE
HTTP_EXPECTATION_FAILED
HTTP_UNPROCESSABLE_ENTITY
HTTP_LOCKED

HTTP_FAILED DEPENDENCY
HTTP_INTERNAL_SERVER_ERROR
HTTP_NOT_IMPLEMENTED
HTTP_BAD_GATEWAY
HTTP_SERVICE_UNAVAILABLE
HTTP_GATEWAY_TIME_OUT
HTTP_VERSION_NOT_SUPPORTED
HTTP_VARIANT_ALSO_VARIES
HTTP_INSUFFICIENT_STORAGE
HTTP_NOT_EXTENDED

As an alternative toreturning an HTTP error code,

= 408

|
al
o
w

handlers can signal an error fasing the

apache.SERVER _RETURNexception, and providing an HTTP error code as the exception value, e.g.

raise apache.SERVER_RETURN, apache.HTTP_FORBIDDEN

4.2. Overview of a Request Handler

19

Handlers can send content to the client usingrdtpwrite() method.
Client data, such as POST requests, can be read by usinggead() function.

Note: The directory of the ApachPython*Handler directive in effect is prepended to tisgs.path . If the
directive was specified in a server config file outside abyjrectory> , then the directory is unknown and not
prepended.

An example of a minimalistic handler might be:

from mod_python import apache

def requesthandler(req):
reg.content_type = "text/plain”
req.write("Hello World!")
return apache.OK

4.3 Overview of a Filter Handler

A filter handleris a function that can alter the input or the output of the server. There are two kinds of fitierg -
andoutputthat apply to input from the client and output to the client respectively.

At this time mod_python supports only request-level filters, meaning that only the body of HTTP request or response
can be filtered. Apache provides support for connection-level filters, which will be supported in the future.

A filter handler receives filter object as its argument. The request object is available as wdilteiareq , but
all writing and reading should be done via the filter's object read and write methods.

Filters need to be closed when a read operation returns None (indicating End-Of-Stream).

The return value of a filter is ignored. Filters cannot decline processing like handlers, but the same effect can be
achieved by using thiiter.pass _on() method.

Filters must first be registered usifythonInputFilter or PythonOutputFilter , then added using the
ApacheAdd/SetInputFilter or Add/SetOutputFilter directives.

Here is an example of how to specify an output filter, it tells the server that all .py files should processed by CAPI-
TALIZE filter:

PythonOutputFilter capitalize CAPITALIZE
AddOutputFilter CAPITALIZE .py

And here is what the code for theapitalize.py’ might look like:

20 Chapter 4. Python API

from mod_python import apache
def outputfilter(filter):

s = filter.read()

while s:
filter.write(s.upper())
s = filter.read()

if s is None:
filter.close()

When writing filters, keep in mind that a filter will be called any time anything upstream requests an 10 operation, and
the filter has no control over the amount of data passed through it and no notion of where in the request processing it
is called. For example, within a single request, a filter may be called once or five times, and there is no way for the
filter to know beforehand that the request is over and which of calls is last or first for this request, thought encounter
of an EOS (None returned from a read operation) is a fairly strong indication of an end of a request.

Also note that filters may end up being called recursively in subrequests. To avoid the data being altered more than
once, always make sure you are not in a subrequest by examiningctineain value.

For more information on filters, seéwtp://httpd.apache.org/docs-2.0/developer/filters.html

4.4 Overview of a Connection Handler

A connection handlehandles the connection, starting almost immediately from the point the TCP connection to the
server was made.

Unlike HTTP handlers, connection handlers receieem@anectiorobject as an argument.
Connection handlers can be used to implement protocols. Here is an example of a simple echo server:

Apache configuration:

PythonConnectionHandler echo

Contents okcho.py file:

from mod_python import apache
def connectionhandler(conn):

while 1:
conn.write(conn.readline())

return apache.OK

4.5 apache — Access to Apache Internals.

4.4. Overview of a Connection Handler 21

The Python interface to Apache internals is contained in a module appropriately apatte , located inside the
mod_python package. This module provides some important objects that map to Apache internal structures, as well
as some useful functions, all documented below. (The request object also provides an interface to Apache internals, it
is covered in its own section of this manual.)

Theapache module can only be imported by a script running under npydhon. This is because it depends on a
built-in module_apache provided by modpython.

It is best imported like this:

from mod_python import apache

mod_python.apache module defines the following functions and objects. For a more in-depth look at Apache
internals, see thépache Developer page

45.1 Functions

log _error (messag[a level, serve])
An interface to the Apachap _log _error() function. messagés a string with the error messadeyelis
one of the following flags constants:

APLOG_EMERG
APLOG_ALERT
APLOG_CRIT
APLOG_ERR
APLOG_WARNING
APLOG_NOTICE
APLOG_INFO
APLOG_DEBUG
APLOG_NOERRNO

serveris a reference to eeq.server object. If serveris not specified, then the error will be logged to the
default error log, otherwise it will be written to the error log for the appropriate virtual server. \8#reeris

not specified, the setting of LogLevel does not apply, the LogLevel is dictated by an httpd compile-time default,
usuallywarn .

If you have a reference to a request object available, consider tesilgg _error instead, it will prepend
request-specific information such as the source IP of the request to the log entry.

import _module (modulename[, autoreload=1, log=0, path:Non]e)
This function can be used to import modules taking advantage of pyitlon’s internal mechanism which
reloads modules automatically if they have changed since last import.

module_nameis a string containing the module name (it can contain dots, mgpackage.mymodule);
autoreloadindicates whether the module should be reloaded if it has changed since last importoglgen
true, a message will be written to the logs when a module is relo@adaallows restricting modules to specific
paths.

Example:

from mod_python import apache
mymodule = apache.import_module('mymodule’, log=1)

22 Chapter 4. Python API

allow _methods ([*args])
A convenience function to set valuesrigg.allowed . reg.allowed s a bitmask that is used to construct
the ‘Allow: ' header. It should be set before returning@TP_NOT_IMPLEMENTELrror.

Arguments can be one or more of the following:

M_GET
M_PUT

M_POST

M_DELETE
M_CONNECT
M_OPTIONS

M_TRACE

M_PATCH
M_PROPFIND
M_PROPPATCH
M_MKCOL

M_COPY

M_MOVE

M_LOCK

M_UNLOCK
M_VERSION_CONTROL
M_CHECKOUT
M_UNCHECKOUT
M_CHECKIN
M_UPDATE

M_LABEL

M_REPORT
M_MKWORKSPACE
M_MKACTIVITY
M_BASELINE_CONTROL
M_MERGE

M_INVALID

exists _config _define (nameg
This function returns True if the Apache server was launched with the definition with the game
This means that you can test whether Apache was launched withDR®OBARparameter by calling
apache.exists _config _define(FOOBAR’)

register _cleanup (handler[, data])
Registers a cleanup. Equivalent to req.register _cleanup() or
req.server.register _cleanup() , except that a server or request object is not required.

config _tree ()
Returns the server-level configuration tree. This tree does not include directives from .htaccess files. This is a
copyof the tree, modifying it has no effect on the actual configuration.

server _root ()
Returns the value of ServerRoot.

make_table ()
This function is obsolete and is an aliagable (see below).

mpm.query (code

Allows querying of the MPM for various parameters such as numbers of processes and threads. The return value
is one of three constants:

4.5. apache - Access to Apache Internals. 23

AP_MPMQ_NOT_SUPPORTED

AP_MPMQ_STATIC

AP_MPMQ_DYNAMIC

0 # This value specifies whether
an MPM is capable of
threading or forking.

1 # This value specifies whether

an MPM is using a static # of

threads or daemons.

2 # This value specifies whether

an MPM is using a dynamic # of
threads or daemons.

The codeargument must be one of the following:

AP_MPMQ_MAX_DAEMON_USED
AP_MPMQ_IS_THREADED
AP_MPMQ_IS_FORKED
AP_MPMQ_HARD_LIMIT_DAEMONS
AP_MPMQ_HARD_LIMIT_THREADS
AP_MPMQ_MAX_THREADS
AP_MPMQ_MIN_SPARE_DAEMONS
AP_MPMQ_MIN_SPARE_THREADS
AP_MPMQ_MAX_SPARE_DAEMONS
AP_MPMQ_MAX_SPARE_THREADS

=6
=7
=8

1 # Max # of daemons used so far
MPM can do threading

MPM can do forking

The compiled max # daemons

e compiled max # threads

of threads/child by config

Min # of spare daemons

Min # of spare threads

9 # Max # of spare daemons

2 #
3 #
4 #
5 # Th
#
#
#

= 10 # Max # of spare threads

AP_MPMQ_MAX REQUESTS_DAEMON= 11 # Max # of requests per daemon

AP_MPMQ_MAX_DAEMONS

12 # Max # of daemons by config

Example:

if apache.mpm_query(apache.AP_MPMQ_IS_THREADED):
do something

else:
do something else

4.5.2 Table Object (mp_table)

classtable ([mapping-or—sequende)
Returns a new empty object of tymep_table . See Section 4.5.2 for description of the table object. The
mapping-or-sequenagill be used to provide initial values for the table.

The table object is a wrapper around the Apache APR table. The table object behaves very much like a dictionary
(including the Python 2.2 features such as support ofrtheperator, etc.), with the following differences:

eBoth keys and values must be strings.
eKey lookups are case-insensitive.

eDuplicate keys are allowed (se€dd() below). When there is more than one value for a key, a subscript
operation returns a list.
Much of the information that Apache uses is stored in tables. _in and
reg.headers _out .

All the tables that modpython provides inside the request object are actual mappings to the Apache structures,
so changing the Python table also changes the underlying Apache table.

For examgdeheaders

24 Chapter 4. Python API

In addition to normal dictionary-like behavior, the table object also has the following method:

add (key, va)
add() allows for creating duplicate keys, which is useful when multiple headers, s\8#t-&300kie:
are required.

New in version 3.0.

4.5.3 Request Object

The request object is a Python mapping to the Apaelgeiest _rec structure. When a handler is invoked, it is
always passed a single argument - the request object.

You can dynamically assign attributes to it as a way to communicate between handlers.

Request Methods

add _common_vars ()

Calls the Apachep _add _common_vars() function. After a call to this methodeqg.subprocess _env
will contain a lot of CGI information.

add _handler (htype, handi, dir])
Allows dynamic handler registratiohtypeis a string containing the name of any of the apache request (but not
filter or connection) handler directives, e.@ythonHandler . handleris a string containing the name of the
module and the handler function. Optioml is a string containing the name of the directory to be added to the
pythonpath. If no directory is specified, then, if there is already a handler of the same type specified, its directory
is inherited, otherwise the directory of the presently executing handler is used. If thefythanPath
directive in effect, thessys.path will be set exactly according to it (no directories added,dlieargument is
ignored).

A handler added this way only persists throughout the life of the request. It is possible to register more handlers
while inside the handler of the same type. One has to be careful as to not to create an infinite loop this way.

Dynamic handler registration is a useful technique that allows the code to dynamically decide what will happen
next. A typical example might beRythonAuthenHandler that will assign differenPythonHandlers
based on the authorization level, something like:

if manager:

reg.add_handler("PythonHandler", "menu::admin®)
else:

reg.add_handler("PythonHandler", "menu::basic")

Note: If you pass this function an invalid handler, an exception will be generated at the time an attempt is made
to find the handler.

allow _methods (methodE, reset])
Adds methods to theeg.allowed _methods list. This list will be passed imAllowed: header if
HTTP_METHODNOT ALLOWEDr HTTP_NOT_IMPLEMENTEDSs returned to the client. Note that Apache
doesn’t do anything to restrict the methods, this list is only used to construct the header. The actual method-
restricting logic has to be provided in the handler code.

methodss a sequence of strings. résetis 1, then the list of methods is first cleared.

document _root ()
Returns DocumentRoot setting.

get _basic _auth _pw()
Returns a string containing the password when Basic authentication is used.

4.5. apache - Access to Apache Internals. 25

get _config ()
Returns a reference to the table object containing the_mpyithon configuration in effect for this request except
for Python*Handler =~ andPythonOption (The latter can be obtained viaq.get _options() . The
table has directives as keys, and their values, if any, as values.

get _remote _host ([type, stLis,ip])
This method is used to determine remote client's DNS name or IP number. The first call to this function may
entail a DNS look up, but subsequent calls will use the cached result from the first call.

The optionakypeargument can specify the following:

eapache.REMOTE_HOST Look up the DNS name. Return None if Apache directive
HostNameLookups isoff orthe hosthame cannot be determined.

eapache.REMOTE_NAME(Default) Return the DNS name if possible, or the IP (as a string in dotted
decimal notation) otherwise.

eapache.REMOTE_NOLOOKUBon't perform a DNS lookup, return an IP. Note: if a lookup was per-
formed prior to this call, then the cached host name is returned.

eapache.REMOTE_DOUBLEREVForce a double-reverse lookup. On failure, return None.

If str_is_ip is None or unspecified, then the return value is a string representing the DNS name or IP address.

If the optionalstr_is_ip argument is noNone, then the return value is gaddress, str _is _ip) tuple,
wherestr_is_ip is non-zero ifaddress is an IP address string.

On failure,None is returned.

get _options ()
Returns a reference to the table object containing the options set BythenOption directives.

internal _redirect (new_uri)
Internally redirects the request to thew_uri. new_uri must be a string.

The httpd server handles internal redirection by creating a new request object and processing all request phases.
Within an internal redirecteq.prev will contain a reference to a request object from which it was redirected.

log _error (messag[a Ievel])
An interface to the Apachep _log _rerror function.messagés a string with the error messadeyelis one
of the following flags constants:

APLOG_EMERG
APLOG_ALERT
APLOG_CRIT
APLOG_ERR
APLOG_WARNING
APLOG_NOTICE
APLOG_INFO
APLOG_DEBUG
APLOG_NOERRNO

If you need to write to log and do not have a reference to a request object, uapatiee.log _error
function.

meets _conditions ()
Calls the Apachap _meets _conditions() function which returns a status codestatusis apache.OK
generate the content of the response normally. If not, simply retiatas Note thatreq.headers _out
should be set prior to calling this function. The same goesrdgy.status if the status differs from
apache.OK .

Example:

26 Chapter 4. Python API

r.headers_out['ETag’] = "1130794f-3774-4584-a4ea-0ab19e684268"
r.neaders_out['Last-Modified’] = 'Wed, 23 Feb 2005 00:00:00 GMT’
r.headers_out['Expires’] = 'Mon, 18 Apr 2005 17:30:00 GMT’

status = r.meets_conditions()
if status != apache.OK:
return status

... do expensive generation of the response content ...

requires ()
Returns a tuple of strings of argumentséguire directive.

For example, with the following apache configuration:

AuthType Basic
require user joe
require valid-user

requires() would return(user joe’, 'valid-user’)

read ([Ien])
Reads at moden bytes directly from the client, returning a string with the data read. fi¢ghearrgument is
negative or omitted, reads all data given by the client.
This function is affected by th&imeout Apache configuration directive. The read will be aborted and an
IOError raised if theTimeout is reached while reading client data.
This function relies on the client providing th&€ontent-length header. Absence of the
Content-length header will be treated as@ontent-length: 0 was supplied.
IncorrectContent-length may cause the function to try to read more data than available, which will make
the function block until aimeout is reached.

readline ([Ien])
Like read() but reads until end of line.
Note: In accordance with the HTTP specification, most clients will be terminating lines With *’ rather than
simply ‘\n .
readlines ([sizehinr])
Reads all or up teizehintbytes of lines usingeadline and returns a list of the lines read.

register _cleanup (callable[, data])
Registers a cleanup. Argumaratllablecan be any callable object, the optional arguntziican be any object
(default isNone). At the very end of the request, just before the actual request record is destroyed by Apache,
callablewill be called with one argumendata

It is OK to pass the request object as data, but keep in mind that when the cleanup is executed, the request
processing is already complete, so doing things like writing to the client is completely pointless.

If errors are encountered during cleanup processing, they should be in error log, but otherwise will not affect
request processing in any way, which makes cleanup bugs sometimes hard to spot.

If the server is shut down before the cleanup had a chance to run, it's possible that it will not be executed.

sendfile (patf{, offset, Ier])
Sendden bytes of filepath directly to the client, starting at offseffsetusing the server’s internal APbffset
defaults to 0, anten defaults to -1 (send the entire file).

Returns the number of bytes sent, or raises an IOError exception on failure.
This function provides the most efficient way to send a file to the client.

4.5. apache - Access to Apache Internals. 27

write (string[, qush=1])
Writesstring directly to the client, then flushes the buffer, unless flush is 0.

flush ()
Flushes the output buffer.

set _content _length (len)
Sets the value akeq.clength and the Content-Length " header to len. Note that after the headers have
been sent out (which happens just before the first byte of the body is written, i.e. first Ejlwaite()),
calling the method is meaningless.

Request Members

connection
A connection object associated with this request. See Connection Object below for déRaiésd-Only)

server
A server object associate with this request. See Server Object below for d@aigl-Only

next
If this is an internal redirect, the request object we redirec{Read-Only

prev
If this is an internal redirect, the request object we redirect friRead-Only

main
If this is a sub-request, pointer to the main requéRead-Only

the _request
String containing the first line of the reque@Read-Only

assbackwards
Indicates an HTTP/0.9 “simple” request. This means that the response will contain no headers, only the body.
Although this exists for backwards compatibility with obsolescent browsers, some people have figred out that
setting assbackwards to 1 can be a useful technique when including part of the response from an internal redirect
to avoid headers being sent.

proxyreq
A proxy request: one adipache.PROXYREQ_* values.(Read-Only

header _only
A boolean value indicating HEAD request, as opposed to GEdad-Only

protocol
Protocol, as given by the client, ddTTP/0.9 '. Same as CGI SERVERPROTOCOL.(Read-Only

proto _num
Integer. Number version of protocol; 1.1 = 100Read-Only

hostname
String. Host, as set by full URI or Host: head@Read-Only

request _time
A long integer. When request startdiead-Only

status _line
Status line. E.g.200 OK. (Read-Only
status

Status. One odpache.HTTP _* values.

method

28 Chapter 4. Python API

A string containing the method - '"GET’, '"HEAD’, 'POST’, etc. Same as CGl| REQUERIETHOD. (Read-
Only)

method _number
Integer containing the method numb@Read-Only

allowed
Integer. A bitvector of the allowed methods. Used to construct the Allowed: header when responding with
HTTP_METHODNOT ALLOWEDr HTTP_NOT_IMPLEMENTEDThis field is for Apache’s internal use, to
set the Allowed: methods useq.allow _methods() method, described in section 4.5(Read-Only

allowed _xmethods
Tuple. Allowed extension method@Read-Only

allowed _methods
Tuple. List of allowed methods. Used in relation witlE THODNOT_ALLOWEDThis member can be modified
viareq.allow _methods() described in section 4.5.8Read-Only

sent _bodyct
Integer. Byte count in stream is for body. (Read-Only

bytes _sent
Long integer. Number of bytes seifRead-Only

mtime
Long integer. Time the resource was last modifigkad-Only

chunked
Boolean value indicating when sending chunked transfer-codiRepd-Only

range
String. TheRange: header(Read-Only

clength
Long integer. The “real” content lengtfRead-Only

remaining
Long integer. Bytes left to read. (Only makes sense inside a read operéRead-Only

read _length
Long integer. Number of bytes rea@ead-Only

read _body
Integer. How the request body should be re@&kad-Only

read _chunked
Boolean. Read chunked transfer codifigead-Only

expecting _100
Boolean. Is client waiting for a 1004 TP_CONTINUE response(Read-Only

headers _in
A table object containing headers sent by the client.

headers _out
Atable object representing the headers to be sent to the client.

err _headers _out
These headers get send with the error response, instead of headers

subprocess _env
A table object containing environment information typically usable for CGIl. You may have to call
req.add _common.vars() first to fill in the information you need.

4.5. apache - Access to Apache Internals. 29

notes
A table object that could be used to store miscellaneous general purpose info that lives for as long as the
request lives. If you need to pass data between handlers, it's better to simply add members to the request object
than to usanotes .

phase
The phase currently being being processed, €gthonHandler . (Read-Only)

interpreter
The name of the subinterpreter under which we're runnfRgad-Only)

content _type
String. The content type. Magbython maintains an internal flageQg. _content _type _set)to keep track
of whethercontent _type was set manually from within Python. The publisher handler uses this flag in the
following way: whencontent _type isn’t explicitly set, it attempts to guess the content type by examining
the first few bytes of the output.

content _languages
Tuple. List of strings representing the content languages.

handler
The name of the handler currently being processed. This is the handler set bynmua] not the modpython
handler. In most cases it will bertiod_python . (Read-Only

content _encoding
String. Content encodingRead-Only

vlist _validator
Integer. Variant list validator (if negotiated)Read-Only

user
If an authentication check is made, this will hold the user name. Same as CGl| REM{BHR.(Read-Only

Note: req.get _basic _auth _pw() must be called prior to using this value.

ap _auth _type
Authentication type. Same as CGlI AUTHYPE. (Read-Only

no_cache
Boolean. No cache if truéRead-Only

no_local _copy
Boolean. No local copy exist¢Read-Only

unparsed _uri
The URI without any parsing performetRead-Only

uri
The path portion of the UR[Read-Only

filename
String. File name being requested.

canonical _filename
String. The true filenameé€q.filename is canonicalized if they don’t matchjRead-Only)

path _info

String. What follows after the file name, but is before query args, if anything. Same as CGLRFE.
args

String. Same as CGl QUERYARGS. (Read-Only

finfo
Tuple. A file information structure, analogous to POSIX stat, describing the file pointed to by

30 Chapter 4. Python API

the URI. (mode, ino, dev, nlink, uid, gid, size, atime, mtime, ctime, fname,

name). Theapache module defines a set (fINFO_* constants that should be used to access elements

of this tuple. Example:

fname = req.finfo[apache.FINFO_FNAME]

(Read-Only

parsed _uri

Tuple. The URI broken down into pieceg¢scheme, hostinfo, user, password, hostname,

port, path, query, fragment) . Theapache module defines a set &fRI_* constants that should

be used to access elements of this tuple. Example:

fname = req.parsed_uri[apache.URI_PATH]

(Read-Only

used _path _info
Flag to accept or reject patinfo on current reques{Read-Only

eos _sent
Boolean. EOS bucket sefRead-Only

4.5.4 Connection Object (mp_conn)

The connection object is a Python mapping to the Apache _caanstructure.

Connection Methods

read ([Iength])

Reads at moséengthbytes from the client. The read blocks indefinitely until there is at least one byte to read. If
length is -1, keep reading until the socket is closed from the other end (This is kndeXHSUSTIVEmMode

in the http server code).
This method should only be used insidennection Handlers

Note: The behaviour of this method has changed since version 3.0.3. In 3.0.3 and prior, this method would

block untillengthbytes was read.

readline ([Iength])
Reads a line from the connection or uge¢agthbytes.

This method should only be used insidennection Handlers

write (string)
Writesstring to the client.

This method should only be used insi@ennection Handlers

Connection Members

base _server
A server object for the physical vhost that this connection came in thro(lgead-Only

local _addr
The (address, port) tuple for the serv@ead-Only

4.5. apache - Access to Apache Internals.

31

remote _addr
The (address, port) tuple for the cliefRead-Only

remote _ip
String with the IP of the client. Same as CGlI REMQTADDR. (Read-Only

remote _host
String. The DNS name of the remote client. None if DNS has not been cheé€kddmpty string) if no name
found. Same as CGI REMOTHOST.(Read-Only

remote _logname
Remote name if using RFC1413 (ident). Same as CGl REMODENT. (Read-Only

aborted
Boolean. True is the connection is abortéRead-Only

keepalive
Integer. 1 means the connection will be kept for the next request, 0 means “undecided”, -1 means “fatal error”.
(Read-Only

double _reverse
Integer. 1 means double reverse DNS lookup has been performed, 0 means not yet, -1 means yes and it failed.
(Read-Only

keepalives
The number of times this connection has been usedR&ad-Only

local _ip
String with the IP of the serve(Read-Only

local _host
DNS name of the servefRead-Only

id
Long. A unigue connection iqRead-Only

notes
A table object containing miscellaneous general purpose info that lives for as long as the connection lives.

4.5.5 Filter Object (mp_filter)

A filter object is passed to magbython input and output filters. It is used to obtain filter information, as well as get
and pass information to adjacent filters in the filter stack.

Filter Methods

pass _on()
Passes all data through the filter without any processing.

read ([Iength])
Reads at moden bytes from the next filter, returning a string with the data read or None if End Of Stream
(EOS) has been reached. A filraustbe closed once the EOS has been encountered.

If the lenargument is negative or omitted, reads all data currently available.

readline ([Iength])
Reads a line from the next filter or up lengthbytes.

write (' string)
Writesstring to the next filter.

32 Chapter 4. Python API

flush ()
Flushes the output by sending a FLUSH bucket.

close ()
Closes the filter and sends an EOS bucket. Any further 10 operations on this filter will throw an exception.

disable ()
Tells mod_python to ignore the provided handler and just pass the data on. Used internally bypyttozh to
print traceback from exceptions encountered in filter handlers to avoid an infinite loop.

Filter Members
closed
A boolean value indicating whether a filter is closédead-Only

name
String. The name under which this filter is register@®iead-Only

req
A reference to the request obje(Read-Only

is _input
Boolean. True if this is an input filte(Read-Only

handler
String. The name of the Python handler for this filter as specified in the configuré®ead-Only

4.5.6 Server Object (mp_server)

The request object is a Python mapping to the Apaelygest _rec structure. The server structure describes the
server (possibly virtual server) serving the request.

Server Methods

get _config ()
Similar toreq.get _config() , but returns a config pointed to Iserver->module _config Apache
config vector.

register _cleanup (request, caIIabIE, data])
Registers a cleanup. Very similar teg.register _cleanup() , except this cleanup will be executed at
child termination time. This function requires one extra argument - the request object.

Server Members
defn _name
String. The name of the configuration file where the server definition was f¢Redd-Only

defn _line _number
Integer. Line number in the config file where the server definition is fo(Rdad-Only

server _admin
Value of theServerAdmin directive.(Read-Only

server _hostname
Value of theServerName directive. Same as CGlI SERVERAME.(Read-Only

4.5. apache - Access to Apache Internals. 33

names
Tuple. List of normal server names specified in 8&rverAlias directive. This list does not include wild-
carded names, which are listed separatelyild _names. (Read-Only)

wild _names
Tuple. List of wildcarded server names specified inSleeverAlias directive.(Read-Only)

port
Integer. TCP/IP port number. Same as CGl SERVERRT.This member appears to be 0 on Apache 2.0, look
at req.connection.localaddr instead (Read-Only

error _fname
The name of the error log file for this server, if aiiRead-Only

loglevel
Integer. Logging level(Read-Only

is _virtual
Boolean. True if this is a virtual servgRead-Only

timeout
Integer. Value of th&imeout directive.(Read-Only

keep _alive _timeout
Integer. Keepalive timeouf{Read-Only

keep _alive _max
Maximum number of requests per keepaliigead-Only

keep _alive
Use persistent connectionfRead-Only

path
String. Path foiServerPath (Read-Only

pathlen
Integer. Path length(Read-Only

limit _req _line
Integer. Limit on size of the HTTP request lingkead-Only

limit _req _fieldsize
Integer. Limit on size of any request header fi€Read-Only

limit _req _fields
Integer. Limit on number of request header fielRead-Only

4.6 util — Miscellaneous Utilities

Theutil module provides a number of utilities handy to a web application developer similar to those in the standard
library cgi module. The implementations in til module are much more efficient because they call directly into
Apache API's as opposed to using CGI which relies on the environment to pass information.

The recommended way of using this module is:

from mod_python import util

See Also:

34 Chapter 4. Python API

Common Gateway Interface RFC Project Page
(http://CGI-Spec.Golux.Com/)
for detailed information on the CGI specification

4.6.1 FieldStorage class

Access to form data is provided via théeldStorage class. This class is similar to the standard library module
cgi FieldStorage

classFieldStorage (req[, keep_blank_values, stricharsing])
This class provides uniform access to HTML form data submitted by the cliesgi.is an instance of the
mod_python request object.

The optional argumeriteep blank_valuesis a flag indicating whether blank values in URL encoded form data
should be treated as blank strings. The default is false, which means that blank values are ignored as if they
were not included.

The optional argumersttrict_parsingis not yet implemented.

During initialization,FieldStorage class reads all of the data provided by the client. Since all data provided

by the client is consumed at this point, there should be no more tharfrieidStorage class instanti-

ated per single request, nor should you make any attempts to read client data before or after instantiating a
FieldStorage

The data read from the client is then parsed into separate fields and pack&geld in objects, one per field.
For HTML form inputs of typdile , atemporary file is created that can later be accessed \igethe attribute
of aField object.

TheFieldStorage class has a mapping object interface, i.e. it can be treated like a dictionary. When used
as a mapping, the keys are form input names, and the returned dictionary value can be:

eAn instance ofStringField , containing the form input value. This is only when there is a single value
corresponding to the input namé&tringField is a subclass o$tr which provides the additional
value attribute for compatibility with standard libraggi module.

eAn instance of &ield class, if the input is a file upload.

oA list of StringField and/orField objects. This is when multiple values exist, such as for a
<select> HTML form element.

Note: Unlike the standard librarggi moduleFieldStorage class, @ield object is returneanly when
it is a file upload. In all other cases the return is an instancgtiofigField . This means that you do not
need to use thevalue attribute to access values of fields in most cases.

In addition to standard mapping object methdeig]dStorage objects have the following attributes:

list
This is a list ofField objects, one for each input. Multiple inputs with the same name will have multiple
elements in this list.

FieldStorage methods:

getfirst (name[, default])
Always returns only one value associated with form fie¢éane If no such form field or value exists then
the method returns the value specified by the optional parametaeult This parameter defaults tdone
if not specified.

getlist (namg
This method always returns a list of values associated with formrighde The method returns an empty
list if no such form field or value exists farame It returns a list consisting of one item if only one such
value exists.

4.6. util — Miscellaneous Utilities 35

4.6.2 Field class

classField ()
This class is used internally byieldStorage and is not meant to be instantiated by the user. Each instance
of aField class represents an HTML Form input.

Field instances have the following attributes:

name
The input name.

value
The input value. This attribute can be used to read data from a file upload as well, but one has to exercise
caution when dealing with large files since when accessedaliee , the whole file is read into memory.
file
This is a file-like object. For file uploads it points tdamporaryFile instance. (For more information
see the TemporaryFile class in the standard pythompfilemodule).
For simple values, itis 8tringlO object, so you can read simple string values via this attribute instead
of using thevalue attribute as well.

filename
The name of the file as provided by the client.
type
The content-type for this input as provided by the client.
type _options
This is what follows the actual content type in tbentent-type header provided by the client, if
anything. This is a dictionary.

disposition

The value of the first part of theontent-disposition header.
disposition _options

The second part (if any) of trmntent-disposition header in the form of a dictionary.
See Also:

RFC 1867, Form-based File Upload in HTML
for a description of form-based file uploads

4.6.3 Other functions

parse _gs(qs[, keep.blank_values, stricharsing])
This function is functionally equivalent to the standard libragy parse _qgs, except that it is written in C
and is much faster.

Parse a query string given as a string argument (data of dgpkation/x-www-form-urlencoded). Data are
returned as a dictionary. The dictionary keys are the unique query variable names and the values are lists of
values for each name.

The optional argumerkeep_blank_valuesis a flag indicating whether blank values in URL encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The
default false value indicates that blank values are to be ignored and treated as if they were not included.

Note: Thestrict_parsingargument is not yet implemented.

parse _gsl (qs[, keep_blank_values, stricharsing])
This function is functionally equivalent to the standard libregy parse _gsl , except that it is written in C
and is much faster.

Parse a query string given as a string argument (data of dgplcation/x-www-form-urlencoded). Data are
returned as a list of name, value pairs.

36 Chapter 4. Python API

The optional argumerkeep_blank_valuesis a flag indicating whether blank values in URL encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The
default false value indicates that blank values are to be ignored and treated as if they were not included.

Note: Thestrict_parsingargument is not yet implemented.

redirect (req, Iocatior[, permanent=0, text:Non]E)
This is a convenience function to redirect the browser to another location. \WWaenanentis true,
MOVEDPERMANENTL¥tatus is sent to the client, otherwise itNNDVEDTEMPORARILY A short text is
sent to the browser informing that the document has moved (for those rare browsers that do not support redirec-
tion); this text can be overridden by supplyingeatstring.

If this function is called after the headers have already been self®Emor s raised.

This function raisesapache.SERVER _RETURNexception to abandon any further processing of the han-
dle. If you do not want this, you can wrap the call tedirect in a try/except block catching the
apache.SERVER _RETURN

4.7 Cookie — HTTP State Management

TheCookie module provides convenient ways for creating, parsing, sending and receiving HTTP Cookies, as defined
in the specification published by Netscape.

Note: Even though there are official IETF RFC’s describing HTTP State Management Mechanism using cookies,
the de facto standard supported by most browsers is the original Netscape specification. Furthermore, true compliance
with IETF standards is actually incompatible with many popular browsers, even those that claim to be RFC-compliant.
Therefore, this module supports the current common practice, and is not fully RFC compliant.

More specifically, the biggest difference between Netscape and RFC cookies is that RFC cookies are sent from the
browser to the server along with their attributes (like Path or Domain).Qdekie module ignore those incoming
attributes, so all incoming cookies end up as Netscape-style cookies, without any of their attributes defined.

See Also:

Persistent Client State - HTTP Cookies
(http://wp.netscape.com/newsref/std/cookie_spec.html)
for the original Netscape specification.

RFC 2109, HTTP State Management Mechanism
for the first RFC on Cookies.

RFC 2964, Use of HTTP State Managemént
for guidelines on using Cookies.

RFC 2965, HTTP State Management Mechanism
for the latest IETF standard.

HTTP Cookies: Standards, Privacy, and Politics
(http://arxiv.org/abs/cs.SE/0105018)
by David M. Kristol for an excellent overview of the issues surrounding standardization of Cookies.

4.7.1 Classes

classCookie (name, vaIuE, attributes])
This class is used to construct a single cookie nangedeand havingvalueas the value. Additionally, any of
the attributes defined in the Netscape specification and RFC2109 can by supplied as keyword arguments.

The attributes of the class represent cookie attributes, and their string representations become part of the string
representation of the cookie. Ti&ookie class restricts attribute names to only valid values, specifically,

4.7. Cookie —HTTP State Management 37

only the following attributes are allowedname, value, version, path, domain, secure,
comment, expires, max _age, commentURL, discard, port, __data __.

The __data __ attribute is a general-purpose dictionary that can be used for storing arbitrary values, when
necessary (This is useful when subclassduogkie).

The expires attribute is a property whose value is checked upon setting to be in forvidy,*
DD-Mon-YYYY HH:MM:SS GMT(as dictated per Netscape cookie specification), or a numeric value rep-
resenting time in seconds since beginning of epoch (which will be automatically correctly converted to GMT
time string). An invalidexpires value will raiseValueError

When converted to a string, @ookie will be in correct format usable as value in &dokie ' or
‘Set-Cookie 'header.

Note: Unlike the Python Standard Library Cookie classes, this class represents a single cookie (referred to as
Morselin Python Standard Library).

parse (string)
This is a class method that can be used to cre@teakie instance from a cookie strirgjring as passed
in a header value. During parsing, attribute names are converted to lower case.

Because this is a class method, it must be called explicitly specifying the class.
This method returns a dictionary Gookie instances, not a singféookie instance.
Here is an example of getting a singl@okie instance:

mycookies = Cookie.parse("spam=eggs; expires=Sat, 14-Jun-2003 02:42:36 GMT")
spamcookie = mycookies["spam"]

Note: Because this method uses a dictionary, it is not possible to have duplicate cookies. If you would like
to have more than one value in a single cookie, consider usiigrahalCookie

classSignedCookie (name, value, secr{e,tattributes])
This is a subclass @@ookie . This class creates cookies whose name and value are automatically signed using
HMAC (md5) with a provided secretecret which must be a non-empty string.

parse (string, secrekt

This method acts the same wayGsokie.parse() , but also verifies that the cookie is correctly signed.
If the signature cannot be verified, the object returned will be of clasxkie .
Note: Always check the types of objects returned®ignedCookie.parse() f it is an instance of

Cookie (as opposed t8ignedCookie), the signature verification has failed:

assume spam is supposed to be a signed cookie
if type(spam) is not Cookie.SignedCookie:
do something that indicates cookie isn't signed correctly

classMarshalCookie (name, value, secr[atattributes])
This is a subclass dignedCookie . It allows forvalueto be any marshallable objects. Core Python types
such as string, integer, list, etc. are all marshallable object. For a complete lishsg®lmodule documenta-
tion.

When parsing, the signature is checked first, so incorrectly signed cookies will not be unmarshalled.

4.7.2 Functions

add _cookie (req, cookie{, value, attribute§)
This is a convenience function for setting a cookie in request hea@eyis.a mod_pythonRequest object. If
cookieis an instance ofookie (or subclass thereof), then the cookie is set, otheremekiemust be a string,

38 Chapter 4. Python API

in which case &ookie is constructed usingookieas nameyalueas the value, along with any vali@ookie
attributes specified as keyword arguments.

This function will also setCache-Control: no-cache="set-cookie" " header to inform caches
that the cookie value should not be cached.

Here is one way to use this function:

¢ = Cookie.Cookie('spam’, 'eggs’, expires=time.time()+300)
Cookie.add_cookie(req, c)

Here is another:

Cookie.add_cookie(req, 'spam’, 'eggs’, expires=time.time()+300)

get _cookies (req [Class, data])
This is a convenience function for retrieving cookies from incoming headegss a mod_pythonRequest
object. Classis a class whosearse() method will be used to parse the cookies, it default€tmkie .
Data can be any number of keyword arguments which, will be passegatse() (This is useful for
signedCookie andMarshalCookie which requiresecret as an additional argument parse).

4.7.3 Examples

This example sets a simple cookie which expires in 300 seconds:

from mod_python import Cookie, apache
import time

def handler(req):
cookie = Cookie.Cookie('eggs’, 'spam’)
cookie.expires = time.time() + 300

Cookie.add_cookie(req, cookie)

req.write('This response contains a cookiel\n’)
return apache.OK

This example checks for incoming marshal cookie and displays it to the client. If no incoming cookie is present a new
marshal cookie is set. This example usscret007 ' as the secret for HMAC signature.

4.7. Cookie — HTTP State Management 39

from mod_python import apache, Cookie
def handler(req):

cookies = Cookie.get_cookies(req, Cookie.MarshalCookie,
secret="secret007’)
if cookies.has_key('spam’):
spamcookie = cookies['spam’]

req.write(Great, a spam cookie was found: %s\n’ \
% str(spamcookie))
if type(spamcookie) is Cookie.MarshalCookie:
req.write("Here is what it looks like decoded: %s=%s\n’
% (spamcookie.name, spamcookie.value))
else:
req.write(WARNING: The cookie found is not a \
MarshalCookie, it may have been tapered with!)

else:

MarshaCookie allows value to be any marshallable object

value = {egg_count’: 32, 'color: 'white’}

Cookie.add_cookie(req, Cookie.MarshalCookie('spam’, value, \
'secret007"))

reg.write('Spam cookie not found, but we just set onel\n’)

return apache.OK

4.8 Session - Session Management

TheSession module provides objects for maintaining persistent sessions across requests.

The module containsBaseSession class, which is not meant to be used directly (it provides no means of storing
a session)PpbmSession class, which uses a dbm to store sessionsFile&ession class, which uses individual
files to store sessions.

TheBaseSession class also provides session locking, both across processes and threads. For locking it uses APR
global_mutexes (a number of them is pre-created at startup) The mutex number is computed by using modulus of the
sessionidhash() . (Therefore it's possible that different session id’s will have the same hash, but the only implication

is that those two sessions cannot be locked at the same time resulting in a slight delay.)

481 Classes

Session (req[, sid, secret, timeout, Iod&
Session() takes the same argumentsBeseSession
This function returns a instance of the default session class. The the session class to be used can be specified us-

ing PythonOption session valpeherevalueis one ofDbmSession , MemorySession or FileSession
Specifying custom session classes using PythonOption session is not yet supported.

If PythonOption sessiois not found, the function queries the MPM and based on that returns either a new
instance oDbmSession or MemorySession .

MemorySession will be used if the MPM is threaded and not forked (such is the case on Windows), or if it
threaded, forked, but only one process is allowed (the worker MPM can be configured to run this way). In all

40 Chapter 4. Python API

other case®bmSession is used.

classBaseSession (req[, sid, secret, timeout, Iod&
This class is meant to be used as a base class for other classes that implement a session storage maghanism.
is a required reference to a mgalython request object.

BaseSession is a subclass oflict . Data can be stored and retrieved from the session by using it as a
dictionary.

sid is an optional session id; if provided, such a session must already exist, otherwise it is ignored and a new
session with a new sid is createdsiélis not provided, the object will attempt to look at cookies for session id.

If a sid is found in cookies, but it is not previously known or the session has expired, then a new sid is created.
Whether a session is “new” can be determined by callingghenew() method.

Cookies generated by sessions will have a path attribute which is calculated by comparing the server
DocumentRoot and the directory in which theythonHandler directive currently in effect was specified.

E.g. ifdocument root iga/b/c’ and PythonHandler was specified inva/b/c/d/e’, the path will be set to/ti/e’.

You can force a specific path by usiAgplicationPath option (‘PythonOption ApplicationPath

/my/path ' in server configuration).

When asecretis provided BaseSession will use SignedCookie when generating cookies thereby making
the session id almost impossible to fake. The default is to use @ladgkie (though even if not signed, the
session id is generated to be very difficult to guess).

A session will timeout if it has not been accessed for more tirmaout which defaults to 30 minutes. An
attempt to load an expired session will result in a “new” session.

The lock argument (defaults to 1) indicates whether locking should be used. When locking is on, only one
session object with a particular session id can be instantiated at a time.

A session is in “new” state when the session id was just generated, as opposed to being passed in via cookies or
thesid argument.

is _new()
Returns 1 if this session is new. A session will also be “new” after an attempt to instantiate an expired or
non-existent session. It is important to use this method to test whether an attempt to instantiate a session
has succeeded, e.g.:

sess = Session(req)
if sess.is_new():
redirect to login
util.redirect(req, ’http://www.mysite.com/login’)

id ()
Returns the session id.

created ()
Returns the session creation time in seconds since beginning of epoch.

last _accessed ()
Returns last access time in seconds since beginning of epoch.

timeout ()
Returns session timeout interval in seconds.

set _timeout (sec$
Set timeout tesecs

invalidate ()
This method will remove the session from the persistent store and also place a header in outgoing headers
to invalidate the session id cookie.

load ()
Load the session values from storage.

4.8. Session — Session Management 41

save ()
This method writes session values to storage.

delete ()
Remove the session from storage.
init _lock ()

This method initializes the session lock. There is no need to ever call this method, it is intended for
subclasses that wish to use an alternative locking mechanism.

lock ()
Locks this session. If the session is already locked by another thread/process, wait until that lock is
released. There is no need to call this method if locking is handled automatically (default).

This method registeres a cleanup which always unlocks the session at the end of the request processing.

unlock ()
Unlocks this session. (Same lagk() - when locking is handled automatically (default), there is no
need to call this method).

cleanup ()
This method is for subclasses to implement session storage cleaning mechanism (i.e. deleting expired ses-
sions, etc.). It will be called at random, the chance of it being called is controll@L BANUP CHANCE
Session module variable (default 1000). This means that cleanups will be ordered at random and there is
1in 1000 chance of it happening. Subclasses implementing this method should not perform the (potentially
time consuming) cleanup operation in this method, but should insteagtgsegister _cleanup
to register a cleanup which will be executed after the request has been processed.

classDbmSession (req, [dbm, sid, secret, dbmtype, timeout, I])):k

This class provides session storage using a dbm file. Generally, dbm access is very fast, and most dbm imple-
mentations memory-map files for faster access, which makes their performance nearly as fast as direct shared
memory access.

dbmis the name of the dbm file (the file must be writable by the httpd process). This file is not deleted when the
server process is stopped (a nice side benefit of this is that sessions can survive server restarts). By default the
session information is stored in a dbmfile name ‘sess.dom’ and stored in a temporary directory returned

by tempfile.gettempdir() standard library function. An alternative directory can be specified with the
PythonOption session _directory directive. The path and filename can can be overridden by setting
PythonOption session _dbm filename

The implementation uses Pythanydbm module, which will default talbhash on most systems. If you need
to use a specific dbm implementation (eggbm), you can pass that module dsmtype

Note that using this class directly is not cross-platform. For best compatibility across platforms, always use the
Session() function to create sessions.

classFileSession (req, [sid, secret, timeout, lock, fagtleanup, verifycleanup])

New in version 3.2.0.
This class provides session storage using a separate file for each session. It is a suBelssSegsion

Session data is stored in a separate file for each session. These files are not deleted when the server process
is stopped, so sessions are persistent across server restarts. The session files are saved in a directory named
mp_sess in the temporary directory returned by tivepfile.gettempdir() standard library function.

An alternate path can be set usiRgthonOption session _directory /path/to/directory

This directory must exist and be readable and writeable by the apache process.

Expired session files are periodically removed by the cleanup mechanism. The behaviour of the cleanup
can be controlled using théast cleanup and verify_cleanup parameters, as well aBythonOption ses-
sion_grace_period andPythonOption sessiartleanup_time_limit.

efast_cleanupA boolean value used to turn on FileSession cleanup optimization. Defduliésand will
result in reduced cleanup time when there are a large number of session files.

42

Chapter 4. Python API

When fast_cleanupis True, the modification time for the session file is used to determine if it is a
candidate for deletion. Ifcurrent _time - file _modification _time) > (timeout +

grace _period) |, the file will be a candidate for deletion. Verify_cleanupis False, no futher checks
will be made and the file will be deleted.

If fast_cleanupis False, the session file will unpickled and it's timeout value used to determine if the
session is a candidate for deletidast_cleanup= False implies/erify_cleanup= True.

The timeout used in the fastleanup calculation is same as the timeout for the session in the current
request running the filesessiorleanup. If your session objects are not using the same timeout, or you
are manually setting the timeout for a particular session wah _timeout() , you will need to set
verify_cleanup= True.

The value offast_cleanupcan also be set usirigythonOption session _fast _cleanup .

everify_cleanupBoolean value used to optimize the FileSession cleanup process. Defauleis

If verify_cleanupis True, the session file which is being considered for deletion will be unpickled and its
timeout value will be used to decide if the file should be deleted.

Whenverify_cleanupis False, the timeout value for the current session will be used in to determine if the
session has expired. In this case, the session data will not be read from disk, which can lead to a substantial
performance improvement when there are a large number of session files, or where each session is saving
a large amount of data. However this may result in valid sessions being deleted if all the sessions are not
using a the same timeout value.

The value olverify_cleanupcan also be set usirigythonOption session _verify _cleanup

ePythonOption sessiartleanup_time_limit [value] Integer value in seconds. Default is 2 seconds.

Session cleanup could potentially take a long time and be both cpu and disk intensive, depending on the
number of session files and if each file needs to be read to verify the timeout value. To avoid overloading the
server, each time filesessiotleanup is called it will run for a maximum sessioncleanup_time_limit
seconds. Each cleanup call will resume from where the previous call left off so all session files will
eventually be checked.

Settingsessioncleanup_time_limit to O will disable this feature and filesessiaeanup will run to com-
pletion each time it is called.

ePythonOption sessiamgrace _period [value]Integer value in seconds. Default is 240 seconds. This value
is added to the session timeout in determining if a session file should be deleted.
There is a small chance that a the cleanup for a given session file may occur at the exact time that the
session is being accessed by another request. It is possible under certain circumstances for that session
file to be saved in the other request only to be immediately deleted by the cleanup. To avoid this race
condition, a session is allowedyaace _periodbefore it is considered for deletion by the cleanup. As long
as the graceperiod is longer that the time it takes to complete the request (which should normally be less
than 1 second), the session will not be mistakenly deleted by the cleanup.

The default value should be sufficient for most applications.

classMemorySession (req, [sid, secret, timeout, IodB
This class provides session storage using a global dictionary. This class provides by far the best performance,
but cannot be used in a multi-process configuration, and also consumes memory for every active session.

Note that using this class directly is not cross-platform. For best compatibility across platforms, always use the
Session() function to create sessions.

4.8.2 Examples

The following example demonstrates a simple hit counter.

4.8. Session — Session Management 43

from mod_python import Session

def handler(req):
session = Session.Session(req)

try:

session['hits] += 1
except:

session[’hits] = 1

session.save()

reg.content_type = ’text/plain’
reg.write(Hits: %d\n’ % session['hits")
return apache.OK

4.9 psp — Python Server Pages

Thepsp module provides a way to convert text documents (including, but not limited to HTML documents) containing
Python code embedded in special brackets into pure Python code suitable for execution withirpgthrahandler,
thereby providing a versatile mechanism for delivering dynamic content in a style similar to ASP, JSP and others.

The parser used hysp is written in C (generated using flex) and is therefore very fast.
See 6.2 “PSP Handler” for additional PSP information.

Inside the document, Pyth@odeneeds to be surrounded by and ‘%3. Pythonexpressionare enclosed inc%=
and %3. A directivecan be enclosed ik%@and ‘%3. A comment (which will never be part of the resulting code)
can be enclosed ik%-- ' and *--%>’

Here is a primitive PSP page that demonstrated use of both code and expression embedded in an HTML document:

<html>

<%

import time

%>

Hello world, the time is: <%=time.strftime("%Y-%m-%d, %H:%M:%S")%>
</html>

Internally, the PSP parser would translate the above page into the following Python code:

reqg.write(""'<html>

"

import time

req.write("™

Hello world, the time is: ""); req.write(str(time.strftime("%Y-%m-%d, %H:%M:%S"))); req.write("""
</html>

™)

This code, when executed inside a handler would result in a page displaying Waitts world, the time
is: ’ followed by current time.

44 Chapter 4. Python API

Python code can be used to output parts of the page conditionally or in loops. Blocks are denoted from within Python
code by indentation. The last indentation in Python code (even if it is a comment) will persist through the document
until either end of document or more Python code.

Here is an example:

<html>
<%
for n in range(3):

This indent will persist
%>
<p>This paragraph will be
repeated 3 times.</p>

<%

This line will cause the block to end
%>

This line will only be shown once.

</html>

The above will be internally translated to the following Python code:

req.write("""<html|>
")
for n in range(3):
This indent will persist
req.write(""
<p>This paragraph will be
repeated 3 times.</p>

This line will cause the block to end
req.write(""

This line will only be shown once.

</html|>

")

The parser is also smart enough to figure out the indent if the last line of Python ends witblon). Considering
this, and that the indent is reset when a newline is encountered irSiehd*; the above page can be written as:

<html>

<%

for n in range(3):

%>

<p>This paragraph will be

repeated 3 times.</p>

<%

%>

This line will only be shown once.

</html>

However, the above code can be confusing, thus having descriptive comments denoting blocks is highly recommended
as a good practice.

The only directive supported at this timeinelude , here is how it can be used:

4.9. psp — Python Server Pages 45

<%@ include file="ffile/to/include"%>

If the parse() function was called with thdir argument, then the file can be specified as a relative path, otherwise
it has to be absolute.

classPSH req, [filename, string, var]s)

This class represents a PSP object.

reqis a request objecftilenameandstringare optional keyword arguments which indicate the source of the PSP
code. Only one of these can be specified. If neither is speciigdjlename is used agilename

varsis a dictionary of global variables. Vars passed inril®) method will override vars passed in here.
This class is used internally by the PSP handler, but can also be used as a general purpose templating tool.

When a file is used as the source, the code object resulting from the specified file is stored in a memory cache
keyed on file name and file modification time. The cache is global to the Python interpreter. Therefore, unless
the file modification time changes, the file is parsed and resulting code is compiled only once per interpreter.

The cache is limited to 512 pages, which depending on the size of the pages could potentially occupy a significant
amount of memory. If memory is of concern, then you can switch to dbm file caching. Our simple tests showed
only 20% slower performance using bsd db. You will need to check which implementatiaibm defaults

to on your system as some dbm libraries impose a limit on the size of the entry making them unsuitable. Dbm
caching can be enabled vkSPDbmCachePython option, e.qg.:

PythonOption PSPDbmCache *“/tmp/pspcache.dbm”

Note that the dbm cache file is not deleted when the server restarts.

Unlike with files, the code objects resulting from a string are cached in memory only. There is no option to
cache in a dbm file at this time.

run ([vars])
This method will execute the code (produced at object initialization time by parsing and compiling the PSP
source). Optional argumenérsis a dictionary keyed by strings that will be passed in as global variables.
Additionally, the PSP code will be given global variabteg , psp, session andform . A session will
be created and assignedsession variable only ifsession is referenced in the code (the PSP handler
examinesco _names of the code object to make that determination). Remember that a mere mention of
session will generate cookies and turn on session locking, which may or may not be what you want.
Similarly, a mod_pythonFieldStorage object will be instantiated iform is referenced in the code.

The object passed ipsp is an instance odPSPInstance

display _code ()
Returns an HTML-formatted string representing a side-by-side listing of the original PSP code and result-
ing Python code produced by the PSP parser.

Here is an example of hoRSPcan be used as a templating mechanism:
The template file:

<html>
<l-- This is a simple psp template called template.html -->
<hl>Hello, <%=what%>!</h1>

</html>

The handler code:

46

Chapter 4. Python API

from mod_python import apache, psp

def handler(req):
template = psp.PSP(req, filename="template.html’)
template.run({’'what’:'world’})
return apache.OK

classPSPInstance ()
An object of this class is passed as a global varighle to the PSP code. Objects of this class are instantiated
internally and the interface to_init __ is purposely undocumented.
set _error _page (filename@
Used to set a psp page to be processed when an exception occurs. If the path is absolute, it will be
appended to document root, otherwise the file is assumed to exist in the same directory as the current

page. The error page will receive one additional variableeption , which is a 3-tuple returned by
sys.exc _info()

apply _data (objec{, **kw])

This method will call the callable objecbject passing form data as keyword arguments, and return the
result.

redirect (Iocatior{, permanent:(])
This method will redirect the browser to locatiolocation If permanentis true, then
MOVEDPERMANENTLYill be sent (as opposed idOVEDTEMPORARILY.
Note: Redirection can only happen before any data is sent to the client, therefore the Python code block
calling this method must be at the very beginning of the page. Otherwik@Emor exception will be
raised.

Example:
<%

note that the '<’ above is the first byte of the page!
psp.redirect(’http://www.modpython.org’)
%>

Additionally, thepsp module provides the following low level functions:

parse (filenam({, dir])
This function will open file namefllename read and parse its content and return a string of resulting Python
code.

If dir is specified, then the ultimate filename to be parsed is constructed by concateliratindfilename and
the argument tinclude directive can be specified as a relative path. (Note that this is a simple concatenation,
no path separator will be inserteddir does not end with one).

parsestring (string)
This function will parse contents string and return a string of resulting Python code.

4.9. psp — Python Server Pages 47

48

CHAPTER
FIVE

Apache Configuration Directives

5.1 Request Handlers

5.1.1 Python*Handler Directive Syntax

All request handler directives have the following syntax:
Python*Handler handler [handler ..] [| .ext [.ext ...]]
Wherehandleris a callable object that accepts a single argument - request objecexaisda file extension.

Multiple handlers can be specified on a single line, in which case they will be called sequentially, from left to right.
Same handler directives can be specified multiple times as well, with the same result - all handlers listed will be
executed sequentially, from first to last. If any handler in the sequence returns a value otlagratiae.OK |, then
execution of all subsequent handlers is aborted.

The list of handlers can optionally be followed by dollowed by one or more file extensions. This would restrict
the execution of the handler to those file extensions only. This feature only works for handlers executed after the trans
phase.

A handlerhas the following syntax:
module[::object]

Wheremodulecan be a full module name (package dot notation is accepted), and the opbgatls the name of an
object inside the module.

Object can also contain dots, in which case it will be resolved from left to right. During resolution, if pyititbn
encounters an object of typelass> , it will try instantiating it passing it a single argument, a request object.

If no object is specified, then it will default to the directive of the handler, all lower case, with the ywytfibh ’
removed. E.g. the default object for PythonAuthenHandler would be authenhandler.

Example:

PythonAuthzHandler mypackage.mymodule::checkallowed

For more information on handlers, see Overview of a Handler.

Side note: The:! ' was chosen for performance reasons. In order for Python to use objects inside modules, the
modules first need to be imported. Having the separator as simply would considerably complicate process of
sequentially evaluating every word to determine whether it is a package, module, class etc. Using the (admittedly
un-Python-like) !: ' takes the time consuming work of figuring out where the module part ends and the object inside
of it begins away from madpython resulting in a modest performance gain.

49

5.1.2 PythonPostReadRequestHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host
Override: not None

Module: mod_python.c

This handler is called after the request has been read but before any other phases have been processed. This is useful
to make decisions based upon the input header fields.

Note: When this phase of the request is processed, the URI has not yet been translated into a path name, therefore this
directive could never be executed by Apache if it could specified witllitectory> , <Location> , <File>

directives or in an.htaccess’ file. The only place this directive is allowed is the main configuration file, and the

code for it will execute in the main interpreter. And because this phase happens before any identification of the type
of content being requested is done (i.e. is this a python program or a gif?), the python routine specified with this
handler will be called foALL requests on this server (not just python programs), which is an important consideration

if performance is a priority.

The handlers below are documented in order in which phases are processed by Apache.

5.1.3 PythonTransHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host
Override: not None

Module: mod_python.c

This handler gives allows for an opportunity to translate the URI into an actual filename, before the server’s default
rules (Alias directives and the like) are followed.

Note: At the time when this phase of the request is being processed, the URI has not been translated into a path
name, therefore this directive will never be executed by Apache if specified wibinectory> |, <Location> ,

<File> directives or in an.htaccess’ file. The only place this can be specified is the main configuration file, and the
code for it will execute in the main interpreter.

5.1.4 PythonHeaderParserHandler

Syntax: Python*Handler Syntax

Context:server config, virtual host, directory, htaccess
Override: not None

Module: mod_python.c

This handler is called to give the module a chance to look at the request headers and take any appropriate specific
actions early in the processing sequence.

5.1.5 PythonlnitHandler

Syntax: Python*Handler Syntax

Context:server config, virtual host, directory, htaccess
Override: not None

Module: mod_python.c

This handler is the first handler called in the request processing phases that is allowed both inside and outside
‘.htaccess’ and directory.

50 Chapter 5. Apache Configuration Directives

This handler is actually an alias to two different handlers. When specified in the main config file outside
any directory tags, it is an alias tBostReadRequestHandler . When specified inside directory (where
PostReadRequestHandler is not allowed), it aliases tBythonHeaderParserHandler

(This idea was borrowed from maogerl)

5.1.6 PythonAccessHandler

Syntax: Python*Handler Syntax

Context:server config, virtual host, directory, htaccess
Override: not None

Module: mod_python.c

This routine is called to check for any module-specific restrictions placed upon the requested resource.

For example, this can be used to restrict access by IP number. To do so, you woultHETIRNFORBIDDENor
some such to indicate that access is not allowed.

5.1.7 PythonAuthenHandler

Syntax: Python*Handler Syntax

Context:server config, virtual host, directory, htaccess
Override: not None

Module: mod_python.c

This routine is called to check the authentication information sent with the request (such as looking up the user in a
database and verifying that the [encrypted] password sent matches the one in the database).

To obtain the username, useesqg.user . To obtain the password entered by the user, use the
reg.get _basic _auth _pw() function.

A return ofapache.OK means the authentication succeeded. A returapaiche.HTTP _UNAUTHORIZEDvith
most browser will bring up the password dialog box again. A returapaiche. HTTP _FORBIDDENwill usually
show the error on the browser and not bring up the password déglagp. HTTP _FORBIDDENshould be used
when authentication succeeded, but the user is not permitted to access a particular URL.

An example authentication handler might look like this:

def authenhandler(req):

pw = reg.get_basic_auth_pw()

user = reg.user

if user == "spam" and pw == "eggs":
return apache.OK

else:
return apache.HTTP_UNAUTHORIZED

Note: req.get _basic _auth _pw() must be called prior to using theqg.user value. Apache makes no
attempt to decode the authentication information unlegsgget _basic _auth _pw() is called.

5.1.8 PythonAuthzHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess

5.1. Request Handlers 51

Override: not None
Module: mod_python.c

This handler runs after AuthenHandler and is intended for checking whether a user is allowed to access a particular
resource. But more often than not it is done right in the AuthenHandler.

5.1.9 PythonTypeHandler

Syntax: Python*Handler Syntax

Context:server config, virtual host, directory, htaccess
Override: not None

Module: mod_python.c

This routine is called to determine and/or set the various document type information bits, like Content-type (via
r->content _type), language, et cetera.

5.1.10 PythonFixupHandler

Syntax: Python*Handler Syntax

Context:server config, virtual host, directory, htaccess
Override: not None

Module: mod_python.c

This routine is called to perform any module-specific fixing of header fields, et cetera. It is invoked just before any
content-handler.

5.1.11 PythonHandler

Syntax: Python*Handler Syntax

Context:server config, virtual host, directory, htaccess
Override: not None

Module: mod_python.c

This is the main request handler. Many applications will only provide this one handler.

5.1.12 PythonLogHandler

Syntax: Python*Handler Syntax

Context:server config, virtual host, directory, htaccess
Override: not None

Module: mod_python.c

This routine is called to perform any module-specific logging activities.

5.1.13 PythonCleanupHandler

Syntax: Python*Handler Syntax

Context:server config, virtual host, directory, htaccess
Override: not None

Module: mod_python.c

This is the very last handler, called just before the request object is destroyed by Apache.

52 Chapter 5. Apache Configuration Directives

Unlike all the other handlers, the return value of this handler is ignored. Any errors will be logged to the error log, but
will not be sent to the client, even if PythonDebug is On.

This handler is not a valid argument to ttexz.add _handler() function. For dynamic clean up registration, use
reg.register _cleanup()

Once cleanups have started, it is not possible to register more of them. Thereépregister _cleanup()
has no effect within this handler.

Cleanups registered with this directive will execafter cleanups registered witleq.register _cleanup()
5.2 Filters

5.2.1 PythonlnputFilter

Syntax: PythonInputFilter handler name
Context:server config
Module: mod_python.c

Registers an input filtedmandlerunder namaame Handleris a module name optionally followed and a callable
object name. If callable object name is omitted, it will defaultitgutfilter ". Nameis the name under which
the filter is registered, by convention filter names are usually in all caps.

To activate the filter, use th&ddInputFilter directive.

5.2.2 PythonOutputFilter

Syntax: PythonOutputFilter handler name
Context:server config
Module: mod_python.c

Registers an output filtdrandlerunder nameame Handleris a module name optionally followed and a callable
object name. If callable object name is omitted, it will defaultdgatputfilter ". Nameis the name under which
the filter is registered, by convention filter names are usually in all caps.

To activate the filter, use thieddOutputFilter directive.

5.3 Connection Handler

5.3.1 PythonConnectionHandler

Syntax: PythonConnectionHandler handler
Context:server config
Module: mod_python.c

Specifies that the connection should be handled Wwithdler connection handlerHandler will be passed a single
argument - the connection object.

Handleris a module name optionally followed and a callable object name. If callable object name is omitted, it
will default to ‘connectionhandler '

5.2. Filters 53

5.4 Other Directives

5.4.1 PythonEnablePdb

Syntax: PythonEnablePdpOn, Off}

Default: PythonEnablePdb Off

Context:server config, virtual host, directory, htaccess
Override: not None

Module: mod_python.c

When On, modpython will execute the handler functions within the Python debugger pdb using the
pdb.runcall() function.

Because pdb is an interactive tool, start httpd from the command line with the -DBREBCESS option when using
this directive. As soon as your handler code is entered, you will see a Pdb prompt allowing you to step through the
code and examine variables.

5.4.2 PythonDebug

Syntax: PythonDebud On, Off}

Default: PythonDebug Off

Context:server config, virtual host, directory, htaccess
Override: not None

Module: mod_python.c

Normally, the traceback output resulting from uncaught Python errors is sent to the error log. With PythonDebug On
directive specified, the output will be sent to the client (as well as the log), except when the &0Brrisr while
writing, in which case it will go to the error log.

This directive is very useful during the development process. It is recommended that you do not use it production
environment as it may reveal to the client unintended, possibly sensitive security information.

5.4.3 Pythonlmport

Syntax: PythonImportmodule interpretername
Context:server config
Module: mod_python.c

Tells the server to import the Python module module at process startup under the specified interpreter name. This is
useful for initialization tasks that could be time consuming and should not be done at the request processing time, e.g.
initializing a database connection.

The import takes place at child process initialization, so the module will actually be imported once for every child
process spawned.

Note: At the time when the import takes place, the configuration is not completely read yet, so all other directives,
including Pythoninterpreter have no effect on the behavior of modules imported by this directive. Because of this
limitation, the interpreter must be specified explicitly, and must match the name under which subsequent requests
relying on this operation will execute. If you are not sure under what interpreter name a request is running, examine
theinterpreter member of the request object.

See also Multiple Interpreters.

54 Chapter 5. Apache Configuration Directives

5.4.4 PythonInterpPerDirectory

Syntax: PythonInterpPerDirectoryOn, Off}

Default: PythonInterpPerDirectory Off

Context:server config, virtual host, directory, htaccess
Override: not None

Module: mod_python.c

Instructs modpython to name subinterpreters using the directory of the file in the reqegsiilename) rather

than the the server name. This means that scripts in different directories will execute in different subinterpreters as
opposed to the default policy where scripts in the same virtual server execute in the same subinterpreter, even if they
are in different directories.

For example, assume there ig/directory/subdirectory’. * /directory’ has an .htaccess file with a PythonHandler direc-

tive. ‘/directory/subdirectory’ doesn’t have an .htaccess. By default, scripts in /directory at@ctory/subdirectory’

would execute in the same interpreter assuming both directories are accessed via the same virtual server. With Python-
InterpPerDirectory, there would be two different interpreters, one for each directory.

Note: In early phases of the request prior to the URI translation (PostReadRequestHandler and TransHandler) the path
is not yet known because the URI has not been translated. During those phases and with PythonInterpPerDirectory on,
all python code gets executed in the main interpreter. This may not be exactly what you want, but unfortunately there
is no way around this.

See Also:

Section 4.1 Multiple Interpreters
(pyapi-interps.html)
for more information

5.4.5 PythoninterpPerDirective

Syntax: PythonInterpPerDirectivéOn, Off}

Default: PythonInterpPerDirective Off

Context:server config, virtual host, directory, htaccess
Override: not None

Module: mod_python.c

Instructs modpython to name subinterpreters using the directory in which the Python*Handler directive currently in
effect was encountered.

For example, assume there is/directory/subdirectory’. */directory’ has an .htaccess file with a PythonHandler di-
rective. 7directory/subdirectory’ has another .htaccess’ file with another PythonHandler. By default, scripts in
‘Idirectory’ and ‘/directory/subdirectory’ would execute in the same interpreter assuming both directories are in the
same virtual server. With PythoninterpPerDirective, there would be two different interpreters, one for each directive.

See Also:

Section 4.1 Multiple Interpreters
(pyapi-interps.html)
for more information

5.4.6 PythonlInterpreter

Syntax: PythonInterpreter name

Context:server config, virtual host, directory, htaccess
Override: not None

Module: mod_python.c

5.4. Other Directives 55

Forces modpython to use interpreter nametwme overriding the default behaviour or behaviour dictated by
PythoninterpPerDirectory or PythoniInterpPerDirective directive.

This directive can be used to force execution that would normally occur in different subinterpreters to run in the same
one. When specified in the DocumentRoot, it forces the whole server to run in one subinterpreter.

See Also:

Section 4.1 Multiple Interpreters
(pyapi-interps.html)
for more information

5.4.7 PythonHandlerModule

Syntax: PythonHandlerModule module
Context:server config, virtual host, directory, htaccess
Override: not None

Module: mod_python.c

PythonHandlerModule can be used an alternative to Python*Handler directives. The module specified in this handler
will be searched for existence of functions matching the default handler function names, and if a function is found, it
will be executed.

For example, instead of:

PythonAuthenHandler mymodule
PythonHandler mymodule
PythonLogHandler mymodule

one can simply say

PythonHandlerModule mymodule

5.4.8 PythonAutoReload

Syntax: PythonAutoReload On, Off}

Default: PythonAutoReload On

Context:server config, virtual host, directory, htaccess
Override: not None

Module: mod_python.c

If set to Off, instructs modpython not to check the modification date of the module file.

By default, mod python checks the time-stamp of the file and reloads the module if the module’s file modification
date is later than the last import or reload. This way changed modules get automatically reimported, eliminating the
need to restart the server for every change.

Disabling autoreload is useful in production environment where the modules do not change; it will save some process-
ing time and give a small performance gain.

5.4.9 PythonOptimize

Syntax: PythonOptimize{On, Off}

56 Chapter 5. Apache Configuration Directives

Default: PythonOptimize Off
Context:server config
Module: mod_python.c

Enables Python optimization. Same as the Pyt@@option.

5.4.10 PythonOption

Syntax: PythonOption key [value]

Context:server config, virtual host, directory, htaccess
Override: not None

Module: mod_python.c

Assigns a key value pair to a table that can be later retrieved byethget _options() function. This is useful
to pass information between the apache configuration fitepd.conf’, * .htaccess’, etc) and the Python programs. If
the value is omitted or empty"(), then the key is removed from the local configuration.

5.4.11 PythonPath

Syntax: PythonPattpath

Context:server config, virtual host, directory, htaccess
Override: not None

Module: mod_python.c

PythonPath directive sets the PythonPath. The path must be specified in Python list notation, e.g.

PythonPath "[/usr/local/lib/python2.0’, '/usr/local/lib/site_python’, '/some/other/place’]"

The path specified in this directive will replace the path, not add to it. However, because the value of the directive is
evaled, to append a directory to the path, one can specify something like

PythonPath "sys.path+['/mydir]"

Mod_python tries to minimize the number of evals associated with the PythonPath directive because evals are slow
and can negatively impact performance, especially when the directive is specified.inaacess’ file which gets

parsed at every hit. Magyython will remember the arguments to the PythonPath directive in the un-evaled form,
and before evaling the value it will compare it to the remembered value. If the value is the same, no action is taken.
Because of this, you should not rely on the directive as a way to restore the pythonpath to some value if your code
changesiit.

Note: This directive should not be used as a security measure since the Python path is easily manipulated from within
the scripts.

5.4. Other Directives 57

58

CHAPTER
SIX

Standard Handlers

6.1 Publisher Handler

Thepublisher handler is a good way to avoid writing your own handlers and focus on rapid application develop-
ment. It was inspired byopeZPublisher.

6.1.1 Introduction

To use the handler, you need the following lines in your configuration

<Directory /some/path>
SetHandler mod_python
PythonHandler mod_python.publisher
</Directory>

This handler allows access to functions and variables within a module via URL's. For example, if you have the
following module, calledHello.py’:

" Publisher example ™™

def say(req, what="NOTHING"):
return "I am saying %s" % what

A URL http://www.mysite.com/hello.py/say would return | am saying NOTHING '. A URL
http://www.mysite.com/hello.py/say?what=hello would return! am saying hello '

6.1.2 The Publishing Algorithm

The Publisher handler maps a URI directly to a Python variable or callable object, then, respectively, returns it's string
representation or calls it returning the string representation of the return value.

Traversal

The Publisher handler locates and imports the module specified in the URI. The module location is determined from
thereq.filename attribute. Before importing, the file extension, if any, is discarded.

59

If req.filename is empty, the module name defaults tedex

Once module is imported, the remaining part of the URI up to the beginning of any query data (a.k.a.|RETH
is used to find an object within the module. The Publisher haridigerseshe path, one element at a time from left
to right, mapping the elements to Python object within the module.

If no path_info was given in the URL, the Publisher handler will use the default valuedék . If the last element
is an object inside a module, and the one immediately preceding it is a directory (i.e. no module name is given), then
the module name will also default tmdex ’

The traversal will stop anHTTP_NOT_FOUNDwill be returned to the client if:

e Any of the traversed object's names begin with an underscarg (Use underscores to protect objects that
should not be accessible from the web.

e A module is encountered. Published objects cannot be modules for security reasons.

If an object in the path could not be foundT TP_NOT_FOUNDs returned to the client.

For example, given the following configuration:

DocumentRoot /some/dir

<Directory /some/dir>

SetHandler mod_python
PythonHandler mod_python.publisher
</Directory>

And the following Ysome/dir/index.py’ file:

def index(req):
return "We are in index()"
def hello(req):

return "We are in hello()"

Then:

http://www.somehost/index/index will returliVe are in index()

http://www.somehost/index/ will returiWe are in index()

http://www.somehost/index/hello will returiWe are in hello()

http://www.somehost/hello will returi¥e are in hello()

http://www.somehost/spam will returd04 Not Found ’

Argument Matching and Invocation

Once the destination object is found, if it is callable and not a class, the Publisher handler will get a list of arguments
that the object expects. This list is compared with names of fields from HTML form data submitted by the client
via POSTor GET. Values of fields whose names match the names of callable object arguments will be passed as
strings. Any fields whose names do not match the names of callable argument objects will be silently dropped, unless

60 Chapter 6. Standard Handlers

the destination callable object hag*awargs style argument, in which case fields with unmatched names will be
passed in th&kwargs argument.

If the destination is not callable or is a class, then its string representation is returned to the client.

Authentication

The publisher handler provides simple ways to control access to modules and functions.

At every traversal step, the Publisher handler checks for presenceaath __ and__access __ attributes (in this
order), as well as_auth _realm __ attribute.

If __auth __ is found and it is callable, it will be called with three arguments: Refjuest object, a string
containing the user name and a string containing the password. If the return valuewth __ is false, then
HTTP_UNAUTHORIZEDs returned to the client (which will usually cause a password dialog box to appear).

If __auth __is a dictionary, then the user name will be matched against the key and the password against the value
associated with this key. If the key and password do not m&tdi,P_UNAUTHORIZEDs returned. Note that this
requires storing passwords as clear text in source code, which is not very secure.

__auth __ can also be a constant. In this case, ifitis false (ilene, 0, ™ , etc.), thertHTTP_UNAUTHORIZEI[»
returned.

If there exists an__auth _realm __ string, it will be sent to the client as Authorization Realm (this is the text that
usually appears at the top of the password dialog box).

If __access __is found and it is callable, it will be called with two arguments: Request object and a string
containing the user name. If the return value_afaccess __ is false, therHTTP_FORBIDDENS returned to the
client.

If __access __is alist, then the user name will be matched against the list elements. If the user name is not in the
list, HTTP_FORBIDDENS returned.

Similarlyto __auth __, __access __ can be a constant.

In the example below, only useeggs ' with password spam’ can access thkello function:

__auth_realm__ = "Members only"

def __auth__(req, user, passwd):

if user == "eggs" and passwd == "spam" or \
user == "joe" and passwd == "eoj":

return 1

else:

return 0

def __access__ (req, user):
if user == "eggs":

return 1

else:

return 0

def hello(req):
return "hello"

Here is the same functionality, but using an alternative technique:

6.1. Publisher Handler 61

__auth_realm__ = "Members only"
__auth__ = {"eggs":"spam"”, “joe":"eqj"}
__access__ = ["eggs"]

def hello(req):
return "hello"

Since functions cannot be assigned attributes, to protect a function,arth __ or __access __ function can be
defined within the function, e.qg.:

def sensitive(req):

def __auth__(req, user, password):

if user == 'spam’ and password == ’'eggs’”
let them in

return 1

else:

no access

return 0

something involving sensitive information
return ’'sensitive information

Note that this technique will also work if_auth __ or __access __ is a constant, but will not work is they are a
dictionary or a list.

The __auth __ and __access __ mechanisms exist independently of the standaythonAuthenHandler It is
possible to use, for example, the handler to authenticate, then thecess __ list to verify that the authenticated
user is allowed to a particular function.

Note: In order for mod_python to access_auth __, the module containing it must first be imported. Therefore, any
module-level code will get executed during the import even_iuth __ is false. To truly protect a module from
being accessed, use other authentication mechanisms, e.g. the Apadthauth or with a mod_pythonPythonAu-
thenHandlethandler.

6.1.3 Form Data

In the process of matching arguments, the Publisher handler creates an instaist@Sibrageclass. A reference to
this instance is stored in an attribdtem of theRequest object.

Since a FieldStorage can only be instantiated once per request, one must not attempt to instantiate
FieldStorage = when using the Publisher handler and shouldRieguest.form instead.

6.2 PSP Handler

PSP handler is a handler that processes documents usiR§B@aass inmod_python.psp module.

To use it, simply add this to your httpd configuration:

62 Chapter 6. Standard Handlers

AddHandler mod_python .psp
PythonHandler mod_python.psp

For more details on the PSP syntax, see Section 4.9.

If PythonDebug server configuration i®©n, then by appending an underscore’)'to the end of the url you can get
a nice side-by-side listing of original PSP code and resulting Python code generatecbp thedule. This is very
useful for debugging.

Note: Leaving debug on in a production environment will allow remote users to display source code of your PSP
pages!

6.3 CGI Handler

CGI handler is a handler that emulates the CGI environment under jpytitbn.

Note that this is not atfue ' CGI environment in that it is emulated at the Python levetdin and stdout

are provided by substitutingys.stdin andsys.stdout , and the environment is replaced by a dictionary. The
implication is that any outside programs called from within this environmenbsigystem , etc. will not see the
environment available to the Python program, nor will they be able to read/write from standard input/output with the
results expected in arle ' CGI environment.

The handler is provided as a stepping stone for the migration of legacy code away from CGl. It is hot recommended
that you settle on using this handler as the preferred way to usepgttbn for the long term. This is because the

CGI environment was not intended for execution within threads (e.g. requires changing of current directory with
is inherently not thread-safe, so to overcome this cgihandler maintains a thread lock which forces it to process one
request at a time in a multi-threaded server) and therefore can only be implemented in a way that defeats many of the
advantages of using magython in the first place.

To use it, simply add this to yourhitaccess’ file:

SetHandler mod_python
PythonHandler mod_python.cgihandler

As of version 2.7, the cgihandler will properly reload even indirectly imported module. This is done by saving a list of
loaded modules (sys.modules) prior to executing a CGlI script, and then comparing it with a list of imported modules
after the CGl scriptis done. Modules (except for whose whadde___ attribute points to the standard Python library
location) will be deleted from sys.modules thereby forcing Python to load them again next time the CGI script imports
them.

If you do not want the above behavior, edit tlgihandler.py’ file and comment out the code delimited by ###.

Tests show the cgihandler leaking some memory when processing a lot of file uploads. It is still not clear what causes
this. The way to work around this is to set the ApabhexRequestsPerChild to a non-zero value.

6.3. CGI Handler 63

64

APPENDIX
A

Changes from Version (3.1.4)

New Features

New apache.register _cleanup() method.
Newapache.exists _config _define() method.
New file-based session manager class.

Session cookie name can be specified.

The maximum number of mutexes maguthon uses for session locking can now be specifed at compile time
usingconfigure --with-max-locks

New a version attribute in magbython module.

New test handletesthandler.py has been added.

Improvements

Autoreload of a module usingpache.import _module() now works if modification time for the module

is different from the file. Previously, the module was only reloaded if the the modification time of the file was
more recent. This allows for a more graceful reload if a file with an older modification time needs to be restored
from backup.

Fixed the publisher traversal security issue

Obijects hierarchy a la CherryPy can now be published.

mod_python.c now logs reason for a 500 error

Calls toPyErr _Print in mod_python.c are now followed byfflush()
Using an empty value with PythonOption will unset a PythonOption key.
req.path _info is now a read/write member.

Improvements to FieldStorage allow uploading of large files. Uploaded files are now streamed to disk, not to
memory.

Path to flex is now discovered at configuration time or can be specifed usorgigure
--with-flex=/path/to/flex

sys.argv is now initialized to["'mod _python"] so that modules like numarray and pychart can work
properly.

65

Bug Fixes

e Fixed memory leak which resulted from circular references starting from the request object.

e Fixed memory leak resulting from multiple PythonOption directives.

e Fixed Multiple/redundant interpreter creation problem.

e Cookie attributes with attribute names prefixed with $ are now ignored. See Section 4.7 for more information.
e Bug in setting up of configdir from Handler directives fixed.

e mod_python.publisher will now support modules with the same name but in different directories
e Fixed continual reloading of modules problem

e Fixed big marshalled cookies error.

e Fixed mod_python.publisher extension handling

e mod_python.publisher default index file traversal

e mod_python.publisher loading wrong module and giving no warning/error

e apply _fs _data() now works with "new style” objects

e File descriptor fd closed aftep _send _fd() inreq _sendfile()

e Bug in mem_cleanup in MemorySession fixed.

e Fixed bugin_apache. _global _lock() which could cause a segfaultif the lock index parameter is greater
number of mutexes created at mguython startup.

e Fixed bug wherdlocal _ip andlocal _host in connection object were returningmote _ip and
remote _host instead

e Fixed instalLdso Makefile rule so it only installs the dso, not the python files
e Potential deadlock in psp cache handling fixed
e Fixed bug where sessions are used outside jDirectory¢, directive.

e Fixed compile problem on IRIXIn -s requires both TARGET and LINKNAME on IRIX. ie. In -s
TARGET LINK_.NAME

e Fixed./configure problem on SUSE Linux 9.2 (x86-64). Python libraries are in lib64/ for this platform.

e Fixed req.sendfile() problem wheresendfile(filename) sends the incorrect number of bytes
when filename is a symlink.

e Fixed problem where util.FieldStorage was not correctly checking the mime types of POSTed entities
e Fixedconn.local _addr andconn.remote _addr for a better IPv6 support.

e Fixedpsp _parser.l to properly escapbackslash-n , backslash-t andbackslash-r character
sequences.

e Fixed segfault bug when accessing some request object members (alloethads, allowedxmethods, con-
tent_languages) and some server object members (names,naihdes).

¢ Fixed request.adchandler() segfault bug when adding a handler to an empty handler list.
e Fixed PythonAutoReload directive so that AutoReload can be turned off.
e Fixed connection object read() bug on FreeBSD.

¢ Fixed potential buffer corruption bug in connection object read().

66 Appendix A. Changes from Version (3.1.4)

APPENDIX
B

Changes from Previous Major Version

Mod_python 3.0 no longer works with Apache 1.3, only Apache 2.x is supported.
Mod_python no longer works with Python versions less than 2.2.1

Mod_python now supports Apache filters.

Mod_python now supports Apache connection handlers.

Request object supports internegdirect().

Connection object has read(), readline() and write().

Server object has getonfig().

Httpdapi handler has been deprecated.

Zpublisher handler has been deprecated.

Username is now in req.user instead of req.connection.user

(2.X)

67

68

Symbols

Jconfigure, 3
--with-apxs, 4
--with-flex, 4
--with-max-locks, 4
--with-python-src, 4
--with-python, 4

_apache
module, 22

A

aborted (connection attribute), 32
add() (table method), 25
add _common_vars() (request method), 25
add _cookie() (in module Cookie), 38
add _handler() (request method), 25
allow _methods()

in module apache, 23

request method, 25
allowed (request attribute), 29
allowed _methods (request attribute), 29
allowed _xmethods (request attribute), 29
ap_auth _type (request attribute), 30
apache (extension moduleRl
apply _data() (PSPInstance method), 47
apxs, 4
args (request attribute), 30
assbackwards (request attribute), 28
AUTH_TYPE, 30

B

base _server (connection attribute), 31
BaseSession (class in Session), 41
bytes _sent (request attribute), 29

C

canonical _filename
CaGl, 63
Changes from
version 2.x, 67
version 3.1.4, 65

(request attribute), 30

INDEX

chunked (request attribute), 29
cleanup() (BaseSession method), 42
clength (request attribute), 29
close() (filter method), 33
closed (filter attribute), 33
compiling

mod._python, 3
config _tree() (in module apache), 23
connection

handler, 21

object, 31
connection (request attribute), 28
content _encoding (request attribute), 30
content _languages (request attribute), 30
content _type (request attribute), 30
Cookie

class in Cookie, 37

extension module37
created() (BaseSession method), 41

D

DbmSession (class in Session), 42

defn _line _number (server attribute), 33
defn _name (server attribute), 33

delete() (BaseSession method), 42
disable() (filter method), 33

display _code() (PSP method), 46
disposition (Field attribute), 36
disposition _options (Field attribute), 36
document _root() (request method), 25
double _reverse (connection attribute), 32

E

environment variables
AUTH_TYPE, 30
PATH_INFO, 30
PATH, 4
QUERY_ARGS, 30
REMOTE_ADDR, 32
REMOTE_HOST, 32
REMOTE_IDENT, 32

69

REMOTE_USER, 30
REQUESTMETHOD, 29
SERVER_NAME, 33
SERVER_PORT, 34
SERVER_PROTOCOL, 28
eos _sent (request attribute), 31
err _headers _out (request attribute), 29
error _fname (server attribute), 34
exists _config _define() (in module apache),
23
expecting _100 (request attribute), 29

F

Field (class in util), 36
FieldStorage (class in util), 35
file (Field attribute), 36
filename

Field attribute, 36

request attribute, 30
FileSession (class in Session), 42
filter

handler, 20

object, 32
finfo (request attribute), 30
flex, 4
flush()

filter method, 33

request method, 28

G

get _basic _auth _pw() (request method), 25
get _config()
request method, 26
server method, 33
get _cookies() (in module Cookie), 39
get _options() (request method), 26
get _remote _host() (request method), 26

getfirst() (FieldStorage method), 35
getlist() (FieldStorage method), 35
H
handler, 12

connection, 21

filter, 20

request, 17
handler

filter attribute, 33

request attribute, 30
header _only (request attribute), 28
headers _in (request attribute), 29
headers _out (request attribute), 29
hostname (request attribute), 28
httpdapi, 67

Httpdapy, 67

id() (BaseSession method), 41
id (connection attribute), 32
import _module() (in module apache), 22

init _lock() (BaseSession method), 42
install_dso

make targets, 5
install_py_lib

make targets, 5
installation

UNIX, 3
internal _redirect() (request method), 26
interpreter (request attribute), 30
invalidate() (BaseSession method), 41

is _input (filter attribute), 33
is _new() (BaseSession method), 41
is _virtual (server attribute), 34

K

keep _alive (server attribute), 34

keep _alive _max (server attribute), 34
keep _alive _timeout (server attribute), 34
keepalive (connection attribute), 32
keepalives (connection attribute), 32

L

last _accessed()
libpython.a, 4
limit _req _fields (server attribute), 34
limit _req _fieldsize (server attribute), 34
limit _req _line (server attribute), 34
list (FieldStorage attribute), 35
load() (BaseSession method), 41
local _addr (connection attribute), 31
local _host (connection attribute), 32
local _ip (connection attribute), 32
lock() (BaseSession method), 42
log _error()

in module apache, 22

table method, 26
loglevel (server attribute), 34

M
mailing list
mod_python, 3
main (request attribute), 28
make targets
install_dso, 5
install_py_lib, 5
make_table() (in module apache), 23
MarshalCookie (class in Cookie), 38

(BaseSession method), 41

70

Index

meets _conditions() (request method), 26
MemorySession (class in Session), 43
method (request attribute), 28
method _number (request attribute), 29
mod_python

compiling, 3

mailing list, 3
mod_python.so, 5
module

_apache, 22
mpm.query() (in module apache), 23
mtime (request attribute), 29

N

name
Field attribute, 36
filter attribute, 33
names (server attribute), 34
next (request attribute), 28
no_cache (request attribute), 30
no_local _copy (request attribute), 30
notes
connection attribute, 32
request attribute, 29

O

object
connection, 31
filter, 32
request, 17
server, 33
table, 24
order
phase, 50

P

parse()

Cookie method, 38

in module psp, 47

SignedCookie method, 38
parse _gs() (in module util), 36
parse _gsl() (in module util), 36
parsed _uri (request attribute), 31
parsestring() (in module psp), 47
pass _on() (filter method), 32
PATH, 4
path (server attribute), 34
PATH_INFO, 30
path _info (request attribute), 30
pathlen (server attribute), 34
phase

order, 50
phase (request attribute), 30

port (server attribute), 34

prev (request attribute), 28
proto _num (request attribute), 28
protocol (request attribute), 28
proxyreq (request attribute), 28
PSP, 62

PSP(class in psp), 46

psp (extension module}4
PSPInstance (class in psp), 47
Python*Handler Syntax, 49
python-src, 4
PythonAccessHandler, 51
PythonAuthenHandler, 51
PythonAuthzHandler, 51
PythonAutoReload, 56
PythonCleanupHandler, 52
PythonConnectionHandler, 53
PythonDebug, 54
PythonEnablePdb, 54
PythonFixupHandler, 52
PythonHandler, 52
PythonHandlerModule, 56
PythonHeaderParserHandler, 50
Pythonlmport, 54
PythonlnitHandler, 50
PythonInputFilter, 53
PythoninterpPerDirectory, 55
PythonlInterpreter, 55
PythonLogHandler, 52
PythonOptimize, 56
PythonOption, 57
PythonOutputFilter, 53
PythonPath, 57
PythonPostReadRequestHandler, 50
PythonPythoninterpPerDirective, 55
PythonTransHandler, 50
PythonTypeHandler, 52

Q

QUERY_ARGS, 30
R

range (request attribute), 29
read()

connection method, 31

filter method, 32

request method, 27
read _body (request attribute), 29
read _chunked (request attribute), 29
read _length (request attribute), 29
readline()

connection method, 31

filter method, 32

request method, 27

Index

71

readlines()
redirect()
in module util, 37
PSPInstance method, 47
register _cleanup()
request method, 27
server method, 23, 33
remaining (request attribute), 29
REMOTE_ADDR, 32
remote _addr (connection attribute), 32
REMOTE_HOST, 32
remote _host (connection attribute), 32
REMOTE_IDENT, 32
remote _ip (connection attribute), 32
remote _logname (connection attribute), 32
REMOTE_USER, 30
req, 17
req (filter attribute), 33
request, 25
handler, 17
object, 17
REQUEST-METHOD, 29
request _time (request attribute), 28
requires() (request method), 27
RFC
RFC 1867, 36
RFC 2109, 37
RFC 2964, 37
RFC 2965, 37
run() (PSP method), 46

S

save() (BaseSession method), 42
sendfile() (request method), 27
sent _bodyct (request attribute), 29
server

object, 33
server (request attribute), 28
server _admin (server attribute), 33
server _hostname (server attribute), 33
SERVER_NAME, 33
SERVER_PORT, 34
SERVER_PROTOCOL, 28
server _root() (in module apache), 23
Session() (in module Session), 40
Session (extension module}}0
set _content _length()

(request method), 27

set _timeout() (BaseSession method), 41
SignedCookie (class in Cookie), 38

status (request attribute), 28

status _line (request attribute), 28
subprocess _env (request attribute), 29

(request method), 28
set _error _page() (PSPInstance method), 47

T

table, 24
object, 24
table (classin apache), 24
the _request (request attribute), 28
timeout() (BaseSession method), 41
timeout (server attribute), 34
type (Field attribute), 36
type _options (Field attribute), 36

U
UNIX
installation, 3
unlock() (BaseSession method), 42

unparsed _uri (request attribute), 30
uri (request attribute), 30

used _path _info (request attribute), 31
user (request attribute), 30

util (extension module34

Vv

value (Field attribute), 36
version 2.x
Changes from, 67
version 3.1.4
Changes from, 65
vlist _validator (request attribute), 30

W

wild _names (server attribute), 34
write()

connection method, 31

filter method, 32

request method, 28

Z
ZPublisher, 67

72

Index

	1 Introduction
	1.1 Performance
	1.2 Flexibility
	1.3 History

	2 Installation
	2.1 Prerequisites
	2.2 Compiling
	2.2.1 Running ./configure
	2.2.2 Running make

	2.3 Installing
	2.3.1 Running make install
	2.3.2 Configuring Apache

	2.4 Testing
	2.5 Troubleshooting

	3 Tutorial
	3.1 A Quick Start with the Publisher Handler
	3.2 Quick Overview of how Apache Handles Requests
	3.3 So what Exactly does Mod-python do?
	3.4 Now something More Complicated - Authentication
	3.5 Your Own 404 Handler

	4 Python API
	4.1 Multiple Interpreters
	4.2 Overview of a Request Handler
	4.3 Overview of a Filter Handler
	4.4 Overview of a Connection Handler
	4.5 apache -- Access to Apache Internals.
	4.5.1 Functions
	4.5.2 Table Object (mp_table)
	4.5.3 Request Object
	Request Methods
	Request Members

	4.5.4 Connection Object (mp_conn)
	Connection Methods
	Connection Members

	4.5.5 Filter Object (mp_filter)
	Filter Methods
	Filter Members

	4.5.6 Server Object (mp_server)
	Server Methods
	Server Members

	4.6 util -- Miscellaneous Utilities
	4.6.1 FieldStorage class
	4.6.2 Field class
	4.6.3 Other functions

	4.7 Cookie -- HTTP State Management
	4.7.1 Classes
	4.7.2 Functions
	4.7.3 Examples

	4.8 Session -- Session Management
	4.8.1 Classes
	4.8.2 Examples

	4.9 psp -- Python Server Pages

	5 Apache Configuration Directives
	5.1 Request Handlers
	5.1.1 Python*Handler Directive Syntax
	5.1.2 PythonPostReadRequestHandler
	5.1.3 PythonTransHandler
	5.1.4 PythonHeaderParserHandler
	5.1.5 PythonInitHandler
	5.1.6 PythonAccessHandler
	5.1.7 PythonAuthenHandler
	5.1.8 PythonAuthzHandler
	5.1.9 PythonTypeHandler
	5.1.10 PythonFixupHandler
	5.1.11 PythonHandler
	5.1.12 PythonLogHandler
	5.1.13 PythonCleanupHandler

	5.2 Filters
	5.2.1 PythonInputFilter
	5.2.2 PythonOutputFilter

	5.3 Connection Handler
	5.3.1 PythonConnectionHandler

	5.4 Other Directives
	5.4.1 PythonEnablePdb
	5.4.2 PythonDebug
	5.4.3 PythonImport
	5.4.4 PythonInterpPerDirectory
	5.4.5 PythonInterpPerDirective
	5.4.6 PythonInterpreter
	5.4.7 PythonHandlerModule
	5.4.8 PythonAutoReload
	5.4.9 PythonOptimize
	5.4.10 PythonOption
	5.4.11 PythonPath

	6 Standard Handlers
	6.1 Publisher Handler
	6.1.1 Introduction
	6.1.2 The Publishing Algorithm
	Traversal
	Argument Matching and Invocation
	Authentication

	6.1.3 Form Data

	6.2 PSP Handler
	6.3 CGI Handler

	A Changes from Version (3.1.4)
	B Changes from Previous Major Version (2.x)
	Index

