
Mod python Manual
Release 3.0.4

Gregory Trubetskoy

November 10, 2003

E-mail: grisha@modpython.org

Copyright c© 2000-2002 Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgment: ”This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).” Alternately, this acknowledgment may appear in the software itself, if and wherever
such third-party acknowledgments normally appear.

4. The names ”Apache” and ”Apache Software Foundation” must not be used to endorse or promote prod-
ucts derived from this software without prior written permission. For written permission, please contact
apache@apache.org.

5. Products derived from this software may not be called ”Apache”, ”modpython”, or ”modpython”, nor may
these terms appear in their name, without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUN-
DATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of an extension to the Apache http server. More information about Apache may be found at

http://www.apache.org/

More information on Python language can be found at

http://www.python.org/

Abstract

Mod python allows embedding Python within the Apache server for a considerable boost in performance and added
flexibility in designing web based applications.

This document aims to be the only necessary and authoritative source of information about modpython, usable as a
comprehensive refence, a user guide and a tutorial all-in-one.

See Also:

Python Language Web Site
(http://www.python.org/)

for information on the Python language

Apache Server Web Site
(http://httpd.apache.org/)

for information on the Apache server

CONTENTS

1 Introduction 1
1.1 Performance. 1
1.2 Flexibility . 1
1.3 History . 1

2 Installation 3
2.1 Prerequisites. 3
2.2 Compiling . 3
2.3 Installing . 4
2.4 Testing . 5
2.5 Troubleshooting . 5

3 Tutorial 7
3.1 A Quick Start with the Publisher Handler. 7
3.2 Quick Overview of how Apache Handles Requests. 9
3.3 So what Exactly does Mod-python do?. 9
3.4 Now something More Complicated - Authentication. 11

4 Python API 13
4.1 Multiple Interpreters. 13
4.2 Overview of a Request Handler. 13
4.3 Overview of a Filter Handler. 15
4.4 Overview of a Connection Handler. 16
4.5 apache – Access to Apache Internals.. 16
4.6 util – Miscellaneous Utilities . 27

5 Apache Configuration Directives 31
5.1 Request Handlers. 31
5.2 Filters. 35
5.3 Connection Handler. 35
5.4 Other Directives . 36

6 Standard Handlers 41
6.1 Publisher Handler. 41
6.2 CGI Handler . 44

A Changes from Previous Major Version (2.x) 45

Index 47

i

ii

CHAPTER

ONE

Introduction

1.1 Performance

One of the main advantages of modpython is the increase in performance over traditional CGI. Below are results of
a very crude test. The test was done on a 1.2Ghz Pentium machine running RedHat Linux 7.3.Ab was used to poll 4
kinds of scripts, all of which imported the standard cgi module (because this is how a typical Python cgi script begins),
then output a single word ”Hello!”. The results are based on 10000 requests with concurrency of 1.

Standard CGI: 23 requests/s
Mod_python cgihandler: 385 requests/s
Mod_python publisher: 476 requests/s
Mod_python handler: 1203 requests/s

1.2 Flexibility

Apache processes requests in phases (e.g. read the request, parse headers, check access, etc.). These phases can
be implemented by functions called handlers. Traditionally, handlers are written in C and compiled into Apache
modules. Modpython provides a way to extend Apache functionality by writing Apache handlers in Python. For a
detailed description of the Apache request processing process, see theApache API Notes, as well as theMod python
- Integrating Python with Apachepaper.

To ease migration from CGI, a standard modpython handler is provided that simulates the CGI environment allowing
a user to run legacy scripts under modpython with no changes to the code (in most cases).

See Also:

http://dev.apache.org/
Apache Developer Resources

http://www.modpython.org/python10/
Mod Python - Integrating Python with Apache, presented at Python 10

1.3 History

Mod python originates from a project calledHttpdapy(1997). For a long time Httpdapy was not called modpython
because Httpdapy was not meant to be Apache-specific. Httpdapy was designed to be cross-platform and in fact was
initially written for the Netscape server (back then it was called Nsapy (1997).

1

This excerpt from the Httpdapy README file describes well the challenges and the solution provided by embedding
Python within the HTTP server:

While developing my first WWW applications a few years back, I found
that using CGI for programs that need to connect to relational
databases (commercial or not) is too slow because every hit requires
loading of the interpreter executable which can be megabytes in size,
any database libraries that can themselves be pretty big, plus, the
database connection/authentication process carries a very significant
overhead because it involves things like DNS resolutions, encryption,
memory allocation, etc.. Under pressure to speed up the application, I
nearly gave up the idea of using Python for the project and started
researching other tools that claimed to specialize in www database
integration. I did not have any faith in MS’s ASP; was quite
frustrated by Netscape LiveWire’s slow performance and bugginess; Cold
Fusion seemed promising, but I soon learned that writing in html-like
tags makes programs as readable as assembly. Same is true for
PHP. Besides, I *really* wanted to write things in Python.

Around the same time the Internet Programming With Python book came
out and the chapter describing how to embed Python within Netscape
server immediately caught my attention. I used the example in my
project, and developed an improved version of what I later called
Nsapy that compiled on both Windows NT and Solaris.

Although Nsapy only worked with Netscape servers, it was a very
intelligent generic OO design that, in the spirit of Python, that lent
itself for easy portability to other web servers.

Incidently, the popularity of Netscape’s servers was taking a turn
south, and so I set out to port Nsapy to other servers starting with
the most popular one, Apache. And so from Nsapy was born Httpdapy.

...continuing this saga, yours truly later learned that writing Httpdapy for every server is a task a little bigger and less
interesting than I originally imagined.

Instead, it seemed like providing a Python counterpart to the popular Perl Apache extension modperl that would give
Python users the same (or better) capability would be a much more exciting thing to do.

And so it was done. The first release of modpython happened in May of 2000.

2 Chapter 1. Introduction

CHAPTER

TWO

Installation

NOTE: By far the best place to get help with installation and other issues is the modpython mailing list. Please
take a moment to join the modpython mailing list by sending an e-mail with the word ”subscribe” in the subject to
mod python-request@modpython.org.

2.1 Prerequisites

• Python 2.2.1 or later. Earlier versions of Python will not work.

• Apache 2.0.40 or later (For Apache 1.3.x, use modpython version 2.7.x).

In order to compile modpython you will need to have the include files for both Apache and Python, as well as the
Python library installed on your system. If you installed Python and Apache from source, then you already have
everything needed. However, if you are using prepackaged software (e.g. Linux Red Hat RPM, Debian, or Solaris
packages from sunsite, etc) then chances are, you have just the binaries and not the sources on your system. Often, the
Apache and Python include files and libraries necessary to compile modpython are part of separate ”development”
package. If you are not sure whether you have all the necessary files, either compile and install Python and Apache
from source, or refer to the documentation for your system on how to get the development packages.

2.2 Compiling

There are two ways in which modules can be compiled and linked to Apache - statically, or as a DSO (Dynamic Shared
Object).

DSOis a more popular approach nowadays and is the recommended one for modpython. The module gets compiled
as a shared library which is dynamically loaded by the server at run time.

The advantage of DSO is that a module can be installed without recompiling Apache and used as needed. A more
detailed description of the Apache DSO mechanism is available athttp://httpd.apache.org/docs-2.0/dso.html.

At this time only DSO is supported by modpython.

Static linking is an older approach. With dynamic linking available on most platforms it is used less and less. The
main drawback is that it entails recompiling Apache, which in many instances is not a favorable option.

2.2.1 Running ./configure

The ./configure script will analyze your environment and create custom Makefiles particular to your system. Aside
from all the standard autoconf stuff,./configuredoes the following:

3

• Finds out whether a program calledapxs is available. This program is part of the standard Apache distribution,
and is necessary for DSO compilation. If apxs cannot be found in your PATH or in/usr/local/apache/bin, DSO
compilation will not be available.

You can manually specify the location of apxs by using the--with-apxs option, e.g.:

$./configure --with-apxs=/usr/local/apache/bin/apxs

It is strongly recommended that you do specify this option.

• Checks your Python version and attempts to figure out wherelibpython is by looking at various parameters
compiled into your Python binary. By default, it will use thepython program found in your PATH.

If the fist Python binary in the path is not suitable or not the one desired for modpython, you can specify an
alternative location with the--with-python options, e.g:

$./configure --with-python=/usr/local/bin/python2.2

2.2.2 Running make

• To start the build process, simply run

$ make

2.3 Installing

2.3.1 Running make install

• This part of the installation needs to be done as root.

$ su
make install

– This will simply copy the library into your Apachelibexec directory, where all the other modules are.

– Lastly, it will install the Python libraries insite-packages and compile them.

NB: If you wish to selectively install just the Python libraries or the DSO (which may not always require
superuser privileges), you can use the followingmake targets:install py lib andinstall dso

2.3.2 Configuring Apache

• If you compiled mod python as a DSO, you will need to tell Apache to load the module by adding the following
line in the Apache configuration file, usually calledhttpd.conf or apache.conf:

LoadModule python_module libexec/mod_python.so

The actual path tomod python.so may vary, but make install should report at the very end exactly where
mod python.sowas placed and how theLoadModule directive should appear.

If your Apache configuration usesClearModuleList directive, you will need to add modpython to the
module list in the Apache configuration file:

AddModule mod_python.c

4 Chapter 2. Installation

2.4 Testing

1. Make some directory that would be visible on your web site, for example, htdocs/test.

2. Add the following Apache directives, which can appear in either the main server configuration file, or.htac-
cess. If you are going to be using the.htaccess file, you will not need the<Directory> tag below (the
directory then becomes the one in which the.htaccess file is located), and you will need to make sure the
AllowOverride directive applicable to this directory has at leastFileInfo specified. (The default is
None, which will not work.)

<Directory /some/directory/htdocs/test>
AddHandler python-program .py
PythonHandler mptest
PythonDebug On

</Directory>

(Substitute/some/directory above for something applicable to your system, usually your Apache ServerRoot)

3. At this time, if you made changes to the main configuration file, you will need to restart Apache in order for the
changes to take effect.

4. Edit mptest.py file in the htdocs/test directory so that is has the following lines (be careful when cutting and
pasting from your browser, you may end up with incorrect indentation and a syntax error):

from mod_python import apache

def handler(req):
req.write("Hello World!")
return apache.OK

5. Point your browser to the URL referring to themptest.py; you should see"Hello World!" . If you didn’t -
refer to the troubleshooting section next.

6. If everything worked well, move on to Chapter 3,Tutorial.

2.5 Troubleshooting

There are a few things you can try to identify the problem:

• Carefully study the error output, if any.

• Check the server error log file, it may contain useful clues.

• Try running Apache from the command line in single process mode:

./httpd -DONE_PROCESS

This prevents it from backgrounding itself and may provide some useful information.

• Ask on the modpython list. Make sure to provide specifics such as:

– Mod python version.

– Your operating system type, name and version.

– Your Python version, and any unusual compilation options.

– Your Apache version.

– Relevant parts of the Apache config, .htaccess.

– Relevant parts of the Python code.

2.4. Testing 5

6

CHAPTER

THREE

Tutorial

So how can I make this work?

This is a quick guide to getting started with modpython programming once you have it installed. This isnot an
installation manual!

It is also highly recommended to read (at least the top part of) Section 4,Python APIafter completing this tutorial.

3.1 A Quick Start with the Publisher Handler

This section provides a quick overview of the Publisher handler for those who would like to get started without getting
into too much detail. A more thorough explanation of how modpython handlers work and what a handler actually is
follows on in the later sections of the tutorial.

The publisher handler is provided as one of the standard modpython handlers. To get the publisher handler
working, you will need the following lines in your config:

AddHandler python-program .py
PythonHandler mod_python.publisher
PythonDebug On

The following example will demonstrate a simple feedback form. The form will ask for the name, e-mail address
and a comment and construct an e-mail to the webmaster using the information submitted by the user. This simple
application consists of two files:form.html - the form to collect the data, andform.py - the target of the form’s action.

Here is the html for the form:

<html>
Please provide feedback below:
<p>
<form action="form.py/email" method="POST">

Name: <input type="text" name="name">

Email: <input type="text" name="email">

Comment: <textarea name="comment" rows=4 cols=20></textarea>

<input type="submit">

</form>
</html>

Note theaction element of the<form> tag points toform.py/email . We are going to create a file called
form.py, like this:

7

import smtplib

WEBMASTER = "webmaster" # webmaster e-mail
SMTP_SERVER = "localhost" # your SMTP server

def email(req, name, email, comment):

make sure the user provided all the parameters
if not (name and email and comment):

return "A required parameter is missing, \
please go back and correct the error"

create the message text
msg = """\

From: %s
Subject: feedback
To: %s

I have the following comment:

%s

Thank You,

%s

""" % (email, WEBMASTER, comment, name)

send it out
conn = smtplib.SMTP(SMTP_SERVER)
conn.sendmail(email, [WEBMASTER], msg)
conn.quit()

provide feedback to the user
s = """\

<html>

Dear %s,

Thank You for your kind comments, we
will get back to you shortly.

</html>""" % name

return s

When the user clicks the Submit button, the publisher handler will load theemail function in theform module,
passing it the form fields as keyword arguments. It will also pass the request object asreq .

Note that you do not have to havereq as one of the arguments if you do not need it. The publisher handler is smart
enough to pass your function only those arguments that it will accept.

The data is sent back to the browser via the return value of the function.

Even though the Publisher handler simplifies modpython programming a grat deal, all the power of modpython
is still available to this program, since it has access to the request object. You can do all the same things you can
do with a ”native” mod python handler, e.g. set custom headers viareq.headers out , return errors by rais-
ing apache.SERVER ERRORexceptions, write or read directly to and from the client viareq.write() and
req.read() , etc.

8 Chapter 3. Tutorial

Read Section 6.1Publisher Handlerfor more information on the publisher handler.

3.2 Quick Overview of how Apache Handles Requests

If you would like delve in deeper into the functionaloty of modpython, you need to understand what a handler is.

Apache processes requests inphases. For example, the first phase may be to authenticate the user, the next phase to
verify whether that user is allowed to see a particular file, then (next phase) read the file and send it to the client. A
typical static file request involves three phases: (1) translate the requisted URI to a file location (2) read the file and
send it to the client, then (3) log the request. Exactly which phases are processed and how varies greatly and depends
on the configuration.

A handleris a function that processes one phase. There may be more than one handler available to process a particular
phase, in which case they are called by Apache in sequence. For each of the phases, there is a default Apache handler
(most of which by default perform only very basic functions or do nothing), and then there are additional handlers
provided by Apache modules, such as modpython.

Mod python provides every possible handler to Apache. Modpython handlers by default do not perform any func-
tion, unless specifically told so by a configuration directive. These directives begin with ‘Python ’ and end with
‘Handler ’ (e.g. PythonAuthenHandler) and associate a phase with a Python function. So the main function of
mod python is to act as a dispatcher between Apache handlers and Python functions written by a developer like you.

The most commonly used handler isPythonHandler . It handles the phase of the request during which the actual
content is provided. Becausee it has no name, it is sometimes referred to as asgenerichandler. The default Apache
action for this handler is to read the file and send it to the client. Most applications you will write will override this
one handler. To see all the possible handlers, refer to Section 5,Apache Directives.

3.3 So what Exactly does Mod-python do?

Let’s pretend we have the following configuration:

<Directory /mywebdir>
AddHandler python-program .py
PythonHandler myscript
PythonDebug On

</Directory>

NB: /mywebdir is an absolute physical path.

And let’s say that we have a python program (Windows users: substitute forward slashes for backslashes)
‘ /mywedir/myscript.py’ that looks like this:

from mod_python import apache

def handler(req):

req.content_type = "text/plain"
req.write("Hello World!")

return apache.OK

Here is what’s going to happen: TheAddHandler directive tells Apache that any request for any file end-
ing with ‘.py’ in the ‘/mywebdir’ directory or a subdirectory thereof needs to be processed by modpython. The
‘PythonHandler myscript ’ directive tells mod python to process the generic handler using themyscript
script. The ‘PythonDebug On ’ directive instructs modpython in case of an Python error to send error output to
the client (in addition to the logs), very useful during development.

3.2. Quick Overview of how Apache Handles Requests 9

When a request comes in, Apache starts stepping through its request processing phases calling handlers in
mod python. The modpython handlers check whether a directive for that handler was specified in the configura-
tion. (Remember, it acts as a dispatcher.) In our example, no action will be taken by modpython for all handlers
except for the generic handler. When we get to the generic handler, modpython will notice ‘PythonHandler
myscript ’ directive and do the following:

1. If not already done, prepend the directory in which thePythonHandler directive was found tosys.path .

2. Attempt to import a module by namemyscript . (Note that if myscript was in a subdirectory of the
directory wherePythonHandler was specified, then the import would not work because said subdirectory
would not be in thesys.path . One way around this is to use package notation, e.g. ‘PythonHandler
subdir.myscript ’.)

3. Look for a function calledhandler in myscript .

4. Call the function, passing it a request object. (More on what a request object is later)

5. At this point we’re inside the script:

• from mod_python import apache

This imports the apache module which provides us the interface to Apache. With a few rare exceptions,
every mod python program will have this line.

• def handler(req):

This is ourhandlerfunction declaration. It is called"handler" because modpython takes the name of
the directive, converts it to lower case and removes the word"python" . Thus"PythonHandler"
becomes"handler" . You could name it something else, and specify it explicitly in the directive
using ‘:: ’. For example, if the handler function was called ‘spam’, then the directive would be
‘PythonHandler myscript::spam ’.
Note that a handler must take one argument - the request object. The request object is an object that
provides all of the information about this particular request - such as the IP of client, the headers, the URI,
etc. The communication back to the client is also done via the request object, i.e. there is no ”response”
object.

•
req.content_type = "text/plain"

This sets the content type to"text/plain" . The default is usually"text/html" , but since our
handler doesn’t produce any html,"text/plain" is more appropriate.

•
req.write("Hello World!")

This writes the"Hello World!" string to the client. (Did I really have to explain this one?)

•
return apache.OK

This tells Apache that everything went OK and that the request has been processed. If things
did not go OK, that line could be returnapache.HTTP INTERNAL SERVERERRORor return
apache.HTTP FORBIDDEN. When things do not go OK, Apache will log the error and generate an
error message for the client.

Some food for thought: If you were paying attention, you noticed that the text above didn’t specify that in
order for the handler code to be executed, the URL needs to refer tomyscript.py. The only requirement was
that it refers to a.py file. In fact the name of the file doesn’t matter, and the file referred to in the URL
doesn’t have to exist. So, given the above configuration, ‘http://myserver/mywebdir/myscript.py ’ and
‘http://myserver/mywebdir/montypython.py ’ would give the exact same result. The important thing
to understand here is that a handler augments the server behaviour when processing a specific type of file, not an
individual file.

At this point, if you didn’t understand the above paragraph, go back and read it again, until you do.

10 Chapter 3. Tutorial

3.4 Now something More Complicated - Authentication

Now that you know how to write a primitive handler, let’s try something more complicated.

Let’s say we want to password-protect this directory. We want the login to be ”spam”, and the password to be ”eggs”.

First, we need to tell Apache to call ourauthenticationhandler when authentication is needed. We do this by adding
thePythonAuthenHandler . So now our config looks like this:

<Directory /mywebdir>
AddHandler python-program .py
PythonHandler myscript
PythonAuthenHandler myscript
PythonDebug On

</Directory>

Notice that the same script is specified for two different handlers. This is fine, because if you remember, modpython
will look for different functions within that script for the different handlers.

Next, we need to tell Apache that we are using Basic HTTP authentication, and only valid users are allowed (this is
fairly basic Apache stuff, so we’re not going to go into details here). Our config looks like this now:

<Directory /mywebdir>
AddHandler python-program .py
PythonHandler myscript
PythonAuthenHandler myscript
PythonDebug On
AuthType Basic
AuthName "Restricted Area"
require valid-user

</Directory>

Now we need to write an authentication handler function in ‘myscript.py’. A basic authentication handler would look
like this:

from mod_python import apache

def authenhandler(req):

user = req.user
pw = req.get_basic_auth_pw()

if user == "spam" and pw == "eggs":
return apache.OK

else:
return apache.HTTP_UNAUTHORIZED

Let’s look at this line by line:

• def authenhandler(req):

This is the handler function declaration. This one is calledauthenhandler because, as we already described
above, modpython takes the name of the directive (PythonAuthenHandler), drops the word ”Python” and
converts it lower case.

•
user = req.user

This is how you obtain the username that the user entered.

3.4. Now something More Complicated - Authentication 11

•
pw = req.get_basic_auth_pw()

This is how we obtain the password. The basic HTTP authentication transmits the password in base64 encoded
form to make it a little bit less obvious. This function decodes the password and returns it as a string.

•
if user == "spam" and pw == "eggs":

return apache.OK

We compare the values provided by the user, and if they are what we were expecting, we tell Apache to go
ahead and proceed by returningapache.OK . Apache will then consider this phase of the request complete,
and proceed to the next phase. (Which in this case would behandler() if it’s a .py file).

•
else:

return apache.HTTP_UNAUTHORIZED

Else, we tell Apache to returnHTTP UNAUTHORIZEDto the client, which usually causes the browser to pop a
dialog box asking for username and password.

12 Chapter 3. Tutorial

CHAPTER

FOUR

Python API

4.1 Multiple Interpreters

When working with modpython, it is important to be aware of a feature of Python that is normally not used when
using the language for writing scripts to be run from command line. This feature is not available from within Python
itself and can only be accessed through theC language API.

Python C API provides the ability to createsubinterpreters. A more detailed description of a subinterpreter is given
in the documentation for thePy NewInterpreter() function. For this discussion, it will suffice to say that each
subinterpreter has its own separate namespace, not accessible from other subinterpreters. Subinterpreters are very
useful to make sure that separate programs running under the same Apache server do not interfere with one another.

At server start-up or modpython initialization time, modpython initializes an interpreter calledmain inter-
preter. The main interpreter contains a dictionary of subinterpreters. Initially, this dictionary is empty. With
every request, as needed, subinterpreters are created, and references to them are stored in this dictionary. The
dictionary is keyed on a string, also known asinterpreter name. This name can be any string. The main in-
terpreter is named ‘main interpreter ’. The way all other interpreters are named can be controlled by
PythonInterp* directives. Default behaviour is to name interpreters using the Apache virtual server name
(ServerName directive). This means that all scripts in the same vrtual server execute in the same subinterpreter,
but scripts in different virtual servers execute in different subinterpreters with completely separate namespaces.
PythonInterpPerDirectory andPythonInterpPerDirective directives alter the naming convention to
use the absolute path of the directory being accessed, or the directory in which thePython*Handler was encoun-
tered, respectively.PythonInterpreter can be used to force the interpreter name to a specific string overriding
any naming conventions.

Once created, a subinterpreter will be reused for subsequent requests. It is never destroyed and exists until the Apache
process dies.

You can find out the name of the interpreter under which you’re running by peeking atreq.interpreter .

See Also:

Python C Language API
(http://www.python.org/doc/current/api/api.html)

Python C Language API

4.2 Overview of a Request Handler

A handleris a function that processes a particular phase of a request. Apache processes requests in phases - read the
request, process headers, provide content, etc. For every phase, it will call handlers, provided by either the Apache
core or one of its modules, such as modpython which passes control to functions provided by the user and written in
Python. A handler written in Python is not any different from a handler written in C, and follows these rules:

13

A handler function will always be passed a reference to a request object. (Throughout this manual, the request object
is often referred to by thereq variable.)

Every handler can return:

• apache.OK , meaning this phase of the request was handled by this handler and no errors occurred.

• apache.DECLINED , meaning this handler has not handled this phase of the request to completion and Apache
needs to look for another handler in subsequent modules.

• apache. HTTP ERROR, meaning an HTTP error occurred.HTTP ERRORcan be any of the following:

HTTP_CONTINUE = 100
HTTP_SWITCHING_PROTOCOLS = 101
HTTP_PROCESSING = 102
HTTP_OK = 200
HTTP_CREATED = 201
HTTP_ACCEPTED = 202
HTTP_NON_AUTHORITATIVE = 203
HTTP_NO_CONTENT = 204
HTTP_RESET_CONTENT = 205
HTTP_PARTIAL_CONTENT = 206
HTTP_MULTI_STATUS = 207
HTTP_MULTIPLE_CHOICES = 300
HTTP_MOVED_PERMANENTLY = 301
HTTP_MOVED_TEMPORARILY = 302
HTTP_SEE_OTHER = 303
HTTP_NOT_MODIFIED = 304
HTTP_USE_PROXY = 305
HTTP_TEMPORARY_REDIRECT = 307
HTTP_BAD_REQUEST = 400
HTTP_UNAUTHORIZED = 401
HTTP_PAYMENT_REQUIRED = 402
HTTP_FORBIDDEN = 403
HTTP_NOT_FOUND = 404
HTTP_METHOD_NOT_ALLOWED = 405
HTTP_NOT_ACCEPTABLE = 406
HTTP_PROXY_AUTHENTICATION_REQUIRED= 407
HTTP_REQUEST_TIME_OUT = 408
HTTP_CONFLICT = 409
HTTP_GONE = 410
HTTP_LENGTH_REQUIRED = 411
HTTP_PRECONDITION_FAILED = 412
HTTP_REQUEST_ENTITY_TOO_LARGE = 413
HTTP_REQUEST_URI_TOO_LARGE = 414
HTTP_UNSUPPORTED_MEDIA_TYPE = 415
HTTP_RANGE_NOT_SATISFIABLE = 416
HTTP_EXPECTATION_FAILED = 417
HTTP_UNPROCESSABLE_ENTITY = 422
HTTP_LOCKED = 423
HTTP_FAILED_DEPENDENCY = 424
HTTP_INTERNAL_SERVER_ERROR = 500
HTTP_NOT_IMPLEMENTED = 501
HTTP_BAD_GATEWAY = 502
HTTP_SERVICE_UNAVAILABLE = 503
HTTP_GATEWAY_TIME_OUT = 504
HTTP_VERSION_NOT_SUPPORTED = 505
HTTP_VARIANT_ALSO_VARIES = 506

14 Chapter 4. Python API

HTTP_INSUFFICIENT_STORAGE = 507
HTTP_NOT_EXTENDED = 510

As an alternative to returning an HTTP error code, handlers can signal an error byraising the
apache.SERVER RETURNexception, and providing an HTTP error code as the exception value, e.g.

raise apache.SERVER_RETURN, apache.HTTP_FORBIDDEN

Handlers can send content to the client using thereq.write() method.

Client data, such as POST requests, can be read by using thereq.read() function.

NOTE: The directory of the ApachePython*Handler directive in effect is prepended to thesys.path . If the
directive was specified in a server config file outside any<Directory> , then the directory is unknown and not
prepended.

An example of a minimalistic handler might be:

from mod_python import apache

def requesthandler(req):
req.content_type = "text/plain"
req.write("Hello World!")
return apache.OK

4.3 Overview of a Filter Handler

A filter handleris a function that can alter the input or the output of the server. There are two kinds of filters -input
andoutputthat apply to input from the client and output to the client respectively.

At this time mod python supports only request-level filters, meaning that only the body of HTTP request or response
can be filtered. Apache provides support for connection-level filters, which will be supported in the future.

A filter handler receives afilter object as its argument. The request object is available as well viafilter.req , but
all writing and reading should be done via the filter’s object read and write methods.

Filters need to be closed when a read operation returns None (indicating End-Of-Stream).

The return value of a filter is ignored. Filters cannot decline processing like handlers, but the same effect can be
achieved by using thefilter.pass on() method.

Filters must first be registered usingPythonInputFilter or PythonOutputFilter , then added using the
ApacheAdd/SetInputFilter or Add/SetOutputFilter directives.

Here is an example of how to specify an output filter, it tells the server that all .py files should processed by CAPI-
TALIZE filter:

PythonOutputFilter capitalize CAPITALIZE
AddOutputFilter CAPITALIZE .py

And here is what the code for the ‘capitalize.py’ might look like:

from mod_python import apache

def outputfilter(filter):

s = filter.read()

4.3. Overview of a Filter Handler 15

while s:
filter.write(s.upper())
s = filter.read()

if s is None:
filter.close()

When writing filters, keep in mind that a filter will be called any time anything upstream requests an IO operation, and
the filter has no control over the amount of data passed through it and no notion of where in the request processing it
is called. For example, within a single request, a filter may be called once or five times, and there is no way for the
filter to know beforehand that the request is over and which of calls is last or first for this request, thought encounter
of an EOS (None returned from a read operation) is a fairly strong indiciation of an end of a request.

Also note that filters may end up being called recursively in subrequests. To avoid the data being altered more than
once, always make sure you are not in a subrequest by examining thereq.main value.

For more information on filters, seehttp://httpd.apache.org/docs-2.0/developer/filters.html.

4.4 Overview of a Connection Handler

A connection handlerhandles the connection, starting almost immediately from the point the TCP connection to the
server was made.

Unlike HTTP handlers, connection handlers receive aconnectionobject as an argument.

Connection handlers can be used to implement protocols. Here is an example of a simple echo server:

Apache configuration:

PythonConnectionHandler echo

Contents ofecho.py file:

from mod_python import apache

def connectionhandler(conn):

while 1:
conn.write(conn.readline())

return apache.OK

4.5 apache – Access to Apache Internals.

The Python interface to Apache internals is contained in a module appropriately namedapache , located inside the
mod python package. This module provides some important objects that map to Apache internal structures, as well
as some useful functions, all documented below. (The request object also provides an interface to Apache internals, it
is covered in its own section of this manual.)

Theapache module can only be imported by a script running under modpython. This is because it depends on a
built-in module apache provided by modpython.

It is best imported like this:

16 Chapter 4. Python API

from mod_python import apache

mod python.apache module defines the following functions and objects. For a more in-depth look at Apache
internals, see theApache Developer page

4.5.1 Functions

log error (message[, level, server])
An interface to the Apacheap log error() function. messageis a string with the error message,level is one of
the following flags constants:

APLOG_EMERG
APLOG_ALERT
APLOG_CRIT
APLOG_ERR
APLOG_WARNING
APLOG_NOTICE
APLOG_INFO
APLOG_DEBUG
APLOG_NOERRNO

serveris a reference to areq.server object. If serveris not specified, then the error will be logged to the
default error log, otherwise it will be written to the error log for the appropriate virtual server. Whenserveris
not specified, the setting of LogLevel does not apply, the LogLevel is dictated by an httpd compile-time default,
usuallywarn .

If you have a reference to a request object available, consider usingreq.log error intead, it will prepend
request-specific information such as the source IP of the request to the log entry.

allow methods ([*args])
A convenience function to set values inreq.allowed . req.allowed is a bitmask that is used to construct
the ”Allow:” header. It should be set before returning aHTTP NOT IMPLEMENTEDerror.

Arguments can be one or more of the following:

M_GET
M_PUT
M_POST
M_DELETE
M_CONNECT
M_OPTIONS
M_TRACE
M_PATCH
M_PROPFIND
M_PROPPATCH
M_MKCOL
M_COPY
M_MOVE
M_LOCK
M_UNLOCK
M_VERSION_CONTROL
M_CHECKOUT
M_UNCHECKOUT
M_CHECKIN
M_UPDATE
M_LABEL
M_REPORT
M_MKWORKSPACE

4.5. apache – Access to Apache Internals. 17

M_MKACTIVITY
M_BASELINE_CONTROL
M_MERGE
M_INVALID

config tree ()
Returns the server-level configuration tree. This tree does not include directives from .htaccess files. This is a
copyof the tree, modifying it has no effect on the actual configuration.

server root ()
Returns the value of ServerRoot.

make table ()
This function is obsolete and is an alias totable (see below).

4.5.2 Table Object (mp table)

classtable ([mapping-or-sequence])
Returns a new empty object of typemp table . See Section 4.5.2 for description of the table object. The
mapping-or-sequencewill be used to provide initial values for the table.

The table object is a wrapper around the Apache APR table. The table object behaves very much like a dictionary
(including the Python 2.2 features such as support of thein operator, etc.), with the following differences:

•Both keys and values must be strings.

•Key lookups are case-insensitive.

•Duplicate keys are allowed (seeadd() below). When there is more than one value for a key, a subscript
opration returns a list.

Much of the information that Apache uses is stored in tables. For example,req.headers in and
req.headers out .

All the tables that modpython provides inside the request object are actual mappings to the Apache structures,
so changing the Python table also changes the underlying Apache table.

In addition to normal dictionary-like behavior, the table object also has the following method:

add (key, val)
add() allows for creating duplicate keys, which is useful when multiple headers, such asSet-Cookie:
are required.

New in version 3.0.

4.5.3 Request Object

The request object is a Python mapping to the Apacherequest rec structure. When a handler is invoked, it is
always passed a single argument - the request object.

You can dynamically assign attributes to it as a way to communicate between handlers.

Request Methods

add common vars ()
Calls the Apacheap add common vars() function. After a call to this method,req.subprocess env
will contain a lot of CGI information.

18 Chapter 4. Python API

add handler (htype, handler[, dir])
Allows dynamic handler registration.htypeis a string containing the name of any of the apache request (but not
filter or connection) handler directives, e.g. ‘PythonHandler ’. handler is a string containing the name of
the module and the handler function. Optionaldir is a string containing the name of the directory to be added
to the pythonpath. If no directory is specified, then, if there is already a handler of the same type specified, its
directory is inherited, otherwise the directory of the presently executing handler is used.

A handler added this way only persists throughout the life of the request. It is possible to register more handlers
while inside the handler of the same type. One has to be careful as to not to create an infinite loop this way.

Dynamic handler registration is a useful technique that allows the code to dynamically decide what will happen
next. A typical example might be aPythonAuthenHandler that will assign differentPythonHandlers
based on the authorization level, something like:

if manager:
req.add_handler("PythonHandler", "menu::admin")

else:
req.add_handler("PythonHandler", "menu::basic")

Note: There is no checking being done on the validity of the handler name. If you pass this function an invalid
handler it will simply be ignored.

allow methods (methods[, reset])
Adds methods to thereq.allowed methods list. This list will be passed inAllowed: header if
HTTP METHODNOT ALLOWEDor HTTP NOT IMPLEMENTEDis returned to the client. Note that Apache
doesn’t do anything to restrict the methods, this list is only used to construct the header. The actual method-
restricting logic has to be provided in the handler code.

methodsis a sequence of strings. Ifresetis 1, then the list of methods is first cleared.

document root ()
Returns DocumentRoot setting.

get basic auth pw()
Returns a string containing the password when Basic authentication is used.

get config ()
Returns a reference to the table object containing the modpython configuration in effect for this request except
for Python*Handler andPythonOption (The latter can be obtained viareq.get options() . The
table has directives as keys, and their values, if any, as values.

get remote host ([type, str is ip])
This method is used to determine remote client’s DNS name or IP number. The first call to this function may
entail a DNS look up, but subsequent calls will use the cached result from the first call.

The optionaltypeargument can specify the following:

•apache.REMOTE HOST Look up the DNS name. Return None if Apache directive
HostNameLookups is off or the hostname cannot be determined.

•apache.REMOTE NAME(Default) Return the DNS name if possible, or the IP (as a string in dotted
decimal notation) otherwise.

•apache.REMOTE NOLOOKUPDon’t perform a DNS lookup, return an IP. Note: if a lookup was per-
formed prior to this call, then the cached host name is returned.

•apache.REMOTE DOUBLEREVForce a double-reverse lookup. On failure, return None.

If str is ip is None or unspecified, then the return value is a string representing the DNS name or IP address.

If the optionalstr is ip argument is notNone, then the return value is an(address, str is ip) tuple,
wherestr is ip is non-zero ifaddress is an IP address string.

4.5. apache – Access to Apache Internals. 19

On failure,None is returned.

get options ()
Returns a reference to the table object containing the options set by thePythonOption directives.

internal redirect (new uri)
Internally redirects the request to thenew uri. new uri must be a string.

The httpd server handles internal redirection by creating a new request object and processing all request phases.
Within an internal redirect,req.prev will contain a reference to a request object from which it was redirected.

read ([len])
Reads at mostlen bytes directly from the client, returning a string with the data read. If thelen argument is
negative or ommitted, reads all data given by the client.

This function is affected by theTimeout Apache configuration directive. The read will be aborted and an
IOError raised if theTimeout is reached while reading client data.

This function relies on the client providing theContent-length header. Absense of the
Content-length header will be treated as ifContent-length: 0 was supplied.

IncorrectContent-length may cause the function to try to read more data than available, which will make
the function block until aTimeout is reached.

readline ([len])
Like read() but reads until end of line.

Note that in accordance with the HTTP specification, most clients will be terminating lines with ”\r\n” rather
than simply ”\n”.

readlines ([sizehint])
Reads all or up tosizehintbytes of lines usingreadline and returns a list of the lines read.

register cleanup (callable[, data])
Registers a cleanup. Argumentcallablecan be any callable object, the optional argumentdatacan be any object
(default isNone). At the very end of the request, just before the actual request record is destroyed by Apache,
callablewill be called with one argument,data.

It is OK to pass the request object as data, but keep in mind that when the cleanup is executed, the request
processing is already complete, so doing things like writing to the client is completely pointless.

If errors are encountered during cleanup processing, they should be in error log, but otherwise will not affect
request processing in any way, which makes cleanup bugs sometimes hard to spot.

If the server is shut down before the cleanup had a chance to run, it’s possible that it will not be executed.

write (string)
Writesstringdirectly to the client, then flushes the buffer.

set content length (len)
Sets the value ofreq.clength and the ”Conent-Length” header to len. Note that after the headers have been
sent out (which happens just before the first byte of the body is written, i.e. first call toreq.write()), calling
the method is meaningless.

Request Members

connection
A connection object associated with this request. See Connection Object below for details.(Read-Only)

server
A server object associate with this request. See Server Object below for details.(Read-Only)

next
If this is an internal redirect, the request object we redirect to.(Read-Only)

20 Chapter 4. Python API

prev
If this is an internal redirect, the request object we redirect from.(Read-Only)

main
If this is a sub-request, pointer to the main request.(Read-Only)

the request
String containing the first line of the request.(Read-Only)

assbackwards
Is this an HTTP/0.9 ”simple” request?(Read-Only)

proxyreq
A proxy request: one ofapache.PROXYREQ * values.(Read-Only)

header only
A boolean value indicating HEAD request, as opposed to GET.(Read-Only)

protocol
Protocol, as given by the client, or ”HTTP/0.9”. Same as CGI SERVERPROTOCOL.(Read-Only)

proto num
Integer. Number version of protocol; 1.1 = 1001(Read-Only)

hostname
String. Host, as set by full URI or Host: header.(Read-Only)

request time
A long integer. When request started.(Read-Only)

status line
Status line. E.g. ”200 OK”.(Read-Only)

status
Status. One ofapache.HTTP * values.

method
A string containing the method - ’GET’, ’HEAD’, ’POST’, etc. Same as CGI REQUESTMETHOD. (Read-
Only)

method number
Integer containg the method number.(Read-Only)

allowed
Integer. A bitvector of the allowed methods. Used to construct the Allowed: header when responding with
HTTP METHODNOT ALLOWEDor HTTP NOT IMPLEMENTED. This field is for Apache’s internal use, to
set the Allowed: methods usereq.allow methods() method, described in section 4.5.3.(Read-Only)

allowed xmethods
Tuple. Allowed extension methods.(Read-Only)

allowed methods
Tuple. List of allowed methods. Used in relation withMETHODNOT ALLOWED. This member can be modified
via req.allow methods() described in section 4.5.3.(Read-Only)

sent bodyct
Integer. Byte count in stream is for body. (?)(Read-Only)

bytes sent
Long integer. Number of bytes sent.(Read-Only)

mtime
Long integer. Time the resource was last modified.(Read-Only)

4.5. apache – Access to Apache Internals. 21

chunked
Boolean value indicating when sending chunked transfer-coding.(Read-Only)

range
String. TheRange: header.(Read-Only)

clength
Long integer. The ”real” content length.(Read-Only)

remaining
Long integer. Bytes left to read. (Only makes sense inside a read operation.)(Read-Only)

read length
Long integer. Number of bytes read.(Read-Only)

read body
Integer. How the request body should be read.(Read-Only)

read chunked
Boolean. Read chunked transfer coding.(Read-Only)

expecting 100
Boolean. Is client waiting for a 100 (HTTP CONTINUE) response.(Read-Only)

headers in
A table object containing headers sent by the client.

headers out
A table object representing the headers to be sent to the client.

err headers out
These headers get send with the error response, instead of headersout.

subprocess env
A table object containing environment information typically usable for CGI. You may have to call
req.add common vars() first to fill in the information you need.

notes
A table object that could be used to store miscellaneous general purpose info that lives for as long as the
request lives. If you need to pass data between handlers, it’s better to simply add members to the request object
than to usenotes .

phase
The phase currently being being processed, e.g. ”PythonHandler”.(Read-Only)

interpreter
The name of the subinterpreter under which we’re running.(Read-Only)

content type
String. The content type. Modpython maintains an internal flag (req. content type set) to keep track
of whethercontent type was set manually from within Python. The publisher handler uses this flag in the
following way: whencontent type isn’t explicitely set, it attempts to guess the content type by examining
the first few bytes of the output.

handler
The name of the handler currently being processed. This is the handler set by modmime, not the modpython
handler. In most cases it will be ”python-program”.(Read-Only)

content encoding
String. Content encoding.(Read-Only)

vlist validator
Integer. Variant list validator (if negotiated).(Read-Only)

22 Chapter 4. Python API

user
If an authentication check is made, this will hold the user name. Same as CGI REMOTEUSER.(Read-Only)

ap auth type
Authentication type. Same as CGI AUTHTYPE. (Read-Only)

no cache
Boolean. No cache if true.(Read-Only)

no local copy
Boolean. No local copy exists.(Read-Only)

unparsed uri
The URI without any parsing performed.(Read-Only)

uri
The path portion of the URI.(Read-Only)

filename
String. File name being requested.

canonical filename
String. The true filename (req.filename is canonicalized if they dont match).(Read-Only)

path info
String. What follows after the file name, but is before query args, if anything. Same as CGI PATHINFO.
(Read-Only)

args
String. Same as CGI QUERYARGS.(Read-Only)

finfo
Tuple. A file information structure, analogous to POSIX stat, describing the file pointed to by
the URI. (mode, ino, dev, nlink, uid, gid, size, atime, mtime, ctime, fname,
name) . The apache module defines a set ofFINFO * constants that should be used to access elements
of this tuple. Example:

fname = req.finfo[apache.FINFO_FNAME]

(Read-Only)

parsed uri
Tuple. The URI broken down into pieces.(scheme, hostinfo, user, password, hostname,
port, path, query, fragment) . Theapache module defines a set ofURI * constants that should
be used to access elements of this tuple. Example:

fname = req.parsed_uri[apache.URI_PATH]

(Read-Only)

used path info
Flag to accept or reject pathinfo on current request.(Read-Only)

eos sent
Boolean. EOS bucket sent.(Read-Only)

4.5.4 Connection Object (mp conn)

The connection object is a Python mapping to the Apache connrec structure.

4.5. apache – Access to Apache Internals. 23

Connection Methods

read (length)
Readslengthbytes from the connection. The read blocks indefinitely until length bytes has been read. If length
is -1, keep reading until the socket is closed from the other end (This is known asEXHAUSTIVEmode in the
http server code).

This method should only be used insideConnection Handlers.

readline ([length])
Reads a line from the connection or up tolengthbytes.

This method should only be used insideConnection Handlers.

write (string)
Writesstring to the client.

This method should only be used insideConnection Handlers.

Connection Members

base server
A server object for the physical vhost that this connection came in through.(Read-Only)

local addr
The (address, port) tuple for the server.(Read-Only)

remote addr
The (address, port) tuple for the client.(Read-Only)

remote ip
String with the IP of the client. Same as CGI REMOTEADDR. (Read-Only)

remote host
String. The DNS name of the remote client. None if DNS has not been checked, ”” (empty string) if no name
found. Same as CGI REMOTEHOST.(Read-Only)

remote logname
Remote name if using RFC1413 (ident). Same as CGI REMOTEIDENT. (Read-Only)

aborted
Boolean. True is the connection is aborted.(Read-Only)

keepalive
Integer. 1 means the connection will be kept for the next request, 0 means ”undecided”, -1 means fatal error.
(Read-Only)

double reverse
Ingeter. 1 means double reverse DNS lookup has been performed, 0 means not yet, -1 means yes and it failed.
(Read-Only)

keepalives
The number of times this connection has been used. (?)(Read-Only)

local ip
String with the IP of the server.(Read-Only)

local host
DNS name of the server.(Read-Only)

id
Long. A unique connection id.(Read-Only)

24 Chapter 4. Python API

notes
A table object containing miscellaneous general purpose info that lives for as long as the connection lives.

4.5.5 Filter Object (mp filter)

A filter object is passed to modpython input and output filters. It is used to obtain filter information, as well as get
and pass information to adjacent filters in the filter stack.

Filter Methods

pass on()
Passes all data throught the filter without any processing.

read ([length])
Reads at mostlen bytes from the next filter, returning a string with the data read or None if End Of Stream
(EOS) has been reached. A filtermustbe closed once the EOS has been encountered.

If the lenargument is negative or ommitted, reads all data currently available.

readline ([length])
Reads a line from the next filter or up tolengthbytes.

write (string)
Writesstring to the next filter.

flush ()
Flushes the output by sending a FLUSH bucket.

close ()
Closes the filter and sends an EOS bucket. Any further IO operations on this filter will throw an exception.

disable ()
Tells mod python to ignore the provided handler and just pass the data on. Used internally by modpython to
print traceback from exceptions encountered in filter handlers to avoid an infinite loop.

Filter Members

closed
A boolean value indicating whether a filter is closed.(Read-Only)

name
String. The name under which this filter is registered.(Read-Only)

req
A reference to the request object.(Read-Only)

is input
Boolean. True if this is an input filter.(Read-Only)

handler
String. The name of the Python handler for this filter as specified in the configuration.(Read-Only)

4.5.6 Server Object (mp server)

The request object is a Python mapping to the Apacherequest rec structure. The server structure describes the
server (possibly virtual server) serving the request.

4.5. apache – Access to Apache Internals. 25

Server Methods

get options ()
Similar toreq.get options() , but returns a config pointed to byserver->module config Apache
config vector.

register cleanup (request, callable[, data])
Registers a cleanup. Very similar toreq.register cleanup() , except this cleanup will be executed at
child termination time. This function requires one extra argument - the request object.

Server Members

defn name
String. The name of the configuration file where the server definition was found.(Read-Only)

defn line number
Integer. Line number in the config file where the server definition is found.(Read-Only)

server admin
Value of theServerAdmin directive.(Read-Only)

server hostname
Value of theServerName directive. Same as CGI SERVERNAME.(Read-Only)

port
Integer. TCP/IP port number. Same as CGI SERVERPORT.This member appears to be 0 on Apache 2.0, look
at req.connection.localaddr instead (Read-Only)

error fname
The name of the error log file for this server, if any.(Read-Only)

loglevel
Integer. Logging level.(Read-Only)

is virtual
Boolean. True if this is a virtual server.(Read-Only)

timeout
Integer. Value of theTimeout directive.(Read-Only)

keep alive timeout
Integer. Keepalive timeout.(Read-Only)

keep alive max
Maximum number of requests per keepalive.(Read-Only)

keep alive
Use persistent connections?(Read-Only)

path
String. Path forServerPath (Read-Only)

pathlen
Integer. Path length.(Read-Only)

limit req line
Integer. Limit on size of the HTTP request line.(Read-Only)

limit req fieldsize
Integer. Limit on size of any request header field.(Read-Only)

limit req fields
Integer. Limit on number of request header fields.(Read-Only)

26 Chapter 4. Python API

4.6 util – Miscellaneous Utilities

Theutil module provides a number of utilities handy to a web application developer similar to those in the standard
library cgi module. The implementations in theutil module are much more efficient because they call directly into
Apache API’s as opposed to using CGI which relies on the environment to pass information.

The recommended way of using this module is:

from mod_python import util

See Also:

Common Gateway Interface RFC Project Page
(http://CGI-Spec.Golux.Com/)

for detailed information on the CGI specification

4.6.1 FieldStorage class

Access to form data is provided via theFieldStorage class. This class is similar to the standard library module
cgi FieldStorage .

classFieldStorage (req[, keep blank values, strict parsing])
This class provides uniform access to HTML form data submitted by the client.req is an instance of the
mod python request object.

The optional argumentkeep blank valuesis a flag indicating whether blank values in URL encoded form data
should be treated as blank strings. The default is false, which means that blank values are ignored as if they
were not included.

The optional argumentstrict parsingis not yet implemented.

During initialization,FieldStorage class reads all of the data provided by the client. Since all data provided
by the client is consumed at this point, there should be no more than oneFieldStorage class instanti-
ated per signle request, nor should you make any attempts to read client data before or after instantiating a
FieldStorage .

The data read from the client is then parsed into separate fields and packaged inField objects, one per field.
For HTML form inputs of typefile , a temporary file is created that can later be accessed via thefile attribute
of aField object.

TheFieldStorage class has a mapping object interface, i.e. it can be treated like a dictionary. When used
as a mapping, the keys are form input names, and the returned dictionary value can be:

•An instance ofStringField , containing the form input value. This is only when there is a single value
corresponding to the input name.StringField is a subclass ofstr which provides the additional
value attribute for compatibility with standard librarycgi module.

•An instances of aField class, if the input is a file upload.

•A list of StringField and/or Field objects. This is when multiple values exist, such as for a
<select> HTML form element.

Note that unlike the standard librarycgi moduleFieldStorage class, aField object is returnedonlywhen
it is a file upload. In all other cases an instance the return is an instance ofStringField , which is a subclass
of str . This means that you do not need to use the.value attribute to access values of fields in most cases.

In addition to standard mapping object methods,FieldStorage objects have the following attributes:

list
This is a list ofField objects, one for each input. Multiple inputs with the same name will have multiple
elements in this list.

4.6. util – Miscellaneous Utilities 27

4.6.2 Field class

classField ()
This class is used internally byFieldStorage and is not meant to be instantiated by the user. Each instance
of aField class represents an HTML Form input.

Field instances have the following attributes:

name
The input name.

value
The input value. This attribute can be used to read data from a file upload as well, but one has to excercise
caution when dealing with large files since when accessed viavalue , the whole file is read into memory.

file
This is a file object. For file uploads it points to a temporary file. For simple values, it is aStringIO
object, so you can read simple string values via this attribute instead of using thevalue attribute as well.

filename
The name of the file as provided by the client.

type
The content-type for this input as provided by the client.

type opyions
This is what follows the actual content type in thecontent-type header provided by the client, if
anything. This is a dictionary.

disposition
The value of the first part of thecontent-disposition header.

disposition options
The second part (if any) of thecontent-disposition header in the form of a dictionary.

See Also:

RFC 1867, “Form-based File Upload in HTML”
for a description of form-based file uploads

4.6.3 Other functions

parse qs (qs[, keep blank values, strict parsing])
This functnion is functionally equivalent to the standard librarycgi parse qs , except that it is written in C
and is much faster.

Parse a query string given as a string argument (data of typeapplication/x-www-form-urlencoded). Data are
returned as a dictionary. The dictionary keys are the unique query variable names and the values are lists of
values for each name.

The optional argumentkeep blank valuesis a flag indicating whether blank values in URL encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The
default false value indicates that blank values are to be ignored and treated as if they were not included.

Note: Thestrict parsingargument is not yet implemented.

parse qsl (qs[, keep blank values, strict parsing])
This functnion is functionally equivalent to the standard librarycgi parse qsl , except that it is written in C
and is much faster.

Parse a query string given as a string argument (data of typeapplication/x-www-form-urlencoded). Data are
returned as a list of name, value pairs.

28 Chapter 4. Python API

The optional argumentkeep blank valuesis a flag indicating whether blank values in URL encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The
default false value indicates that blank values are to be ignored and treated as if they were not included.

Note: Thestrict parsingargument is not yet implemented.

4.6. util – Miscellaneous Utilities 29

30

CHAPTER

FIVE

Apache Configuration Directives

5.1 Request Handlers

5.1.1 Python*Handler Directive Syntax

All request handler directives have the following syntax:

Python*Handler handler [handler ...] [| .ext [.ext ...]]

Wherehandleris a callable object that accepts a single argument - request object, and.ext is a file extension.

Multiple handlers can be specified on a single line, in which case they will be called sequentially, from left to right.
Same handler directives can be specified multiple times as well, with the same result - all handlers listed will be
executed sequentially, from first to last. If any handler in the sequence returns a value other thanapache.OK , then
execution of all subsequent handlers is aborted.

The list of handlers can optionally be followed by a| followed by one or more file extensions. This would restrict
the execution of the handler to those file extensions only. This feature only works for handlers executed after the trans
phase.

A handlerhas the following syntax:

module[::object]

Wheremodulecan be a full module name (package dot notation is accepted), and the optionalobjectis the name of an
object inside the module.

Object can also contain dots, in which case it will be resolved from left to right. During resolution, if modpython
encounters an object of type<class> , it will try instantiating it passing it a single argument, a request object.

If no object is specified, then it will default to the directive of the handler, all lower case, with the word ‘python ’
removed. E.g. the default object for PythonAuthenHandler would be authenhandler.

Example:

PythonAuthzHandler mypackage.mymodule::checkallowed

For more information on handlers, see Overview of a Handler.

Side note: The ”::” was chosen for performance reasons. In order for Python to use objects inside modules, the
modules first need to be imported. Having the separator as simply a ”.”, would considerably complicate process of
sequentially evaluating every word to determine whether it is a package, module, class etc. Using the (admittedly
un-Python-like) ”::” takes the time consuming work of figuring out where the module part ends and the object inside
of it begins away from modpython resulting in a modest performance gain.

31

5.1.2 PythonPostReadRequestHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host
Override: not None
Module: mod python.c

This handler is called after the request has been read but before any other phases have been processed. This is useful
to make decisions based upon the input header fields.

NOTE: When this phase of the request is processed, the URI has not yet been translated into a path name, therefore this
directive could never be executed by Apache if it could specified within<Directory> , <Location> , <File>
directives or in an ‘.htaccess’ file. The only place this directive is allowed is the main configuration file, and the
code for it will execute in the main interpreter. And because this phase happens before any identification of the type
of content being requested is done (i.e. is this a python program or a gif?), the python routine specified with this
handler will be called forALL requests on this server (not just python programs), which is an important consideration
if performance is a priority.

The handlers below are documented in order in which phases are processed by Apache.

5.1.3 PythonTransHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host
Override: not None
Module: mod python.c

This handler gives allows for an opportunity to translate the URI into an actual filename, before the server’s default
rules (Alias directives and the like) are followed.

NOTE: At the time when this phase of the request is being processed, the URI has not been translated into a path
name, therefore this directive will never be executed by Apache if specified within<Directory> , <Location> ,
<File> directives or in an ‘.htaccess’ file. The only place this can be specified is the main configuration file, and the
code for it will execute in the main interpreter.

5.1.4 PythonHeaderParserHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This handler is called to give the module a chance to look at the request headers and take any appropriate specific
actions early in the processing sequence.

5.1.5 PythonInitHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This handler is the first handler called in the request processing phases that is allowed both inside and outside ‘.htac-
cess’ and directory.

32 Chapter 5. Apache Configuration Directives

This handler is actually an alias to two different handlers. When specified in the main config file outside
any directory tags, it is an alias toPostReadRequestHandler . When specified inside directory (where
PostReadRequestHandler is not allowed), it aliases toPythonHeaderParserHandler .

(This idea was borrowed from modperl)

5.1.6 PythonAccessHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This routine is called to check for any module-specific restrictions placed upon the requested resource.

For example, this can be used to restrict access by IP number. To do so, you would returnHTTP FORBIDDENor
some such to indicate that access is not allowed.

5.1.7 PythonAuthenHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This routine is called to check the authentication information sent with the request (such as looking up the user in a
database and verifying that the [encrypted] password sent matches the one in the database).

To obtain the username, usereq.connection.user . To obtain the password entered by the user, use the
req.get basic auth pw() function.

A return ofapache.OK means the authentication succeeded. A return ofapache.HTTP UNAUTHORIZEDwith
most browser will bring up the password dialog box again. A return ofapache.HTTP FORBIDDENwill usually
show the error on the browser and not bring up the password dialogagain. HTTP FORBIDDENshould be used
when authentication succeeded, but the user is not permitted to access a particular URL.

An example authentication handler might look like this:

def authenhandler(req):

pw = req.get_basic_auth_pw()
user = req.connection.user
if user == "spam" and pw == "eggs":

return apache.OK
else:

return apache.HTTP_UNAUTHORIZED

Note: req.get basic auth pw() must be called prior to using thereq.connection.user value. Apache
makes no attempt to decode the authentication information unlessreq.get basic auth pw() is called.

5.1.8 PythonAuthzHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

5.1. Request Handlers 33

This handler runs after AuthenHandler and is intended for checking whether a user is allowed to access a particular
resource. But more often than not it is done right in the AuthenHandler.

5.1.9 PythonTypeHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This routine is called to determine and/or set the various document type information bits, like Content-type (via
r->content type), language, et cetera.

5.1.10 PythonFixupHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This routine is called to perform any module-specific fixing of header fields, et cetera. It is invoked just before any
content-handler.

5.1.11 PythonHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This is the main request handler. Many applications will only provide this one handler.

5.1.12 PythonLogHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This routine is called to perform any module-specific logging activities.

5.1.13 PythonCleanupHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This is the very last handler, called just before the request object is destroyed by Apache.

Unlike all the other handlers, the return value of this handler is ignored. Any errors will be logged to the error log, but
will not be sent to the client, even if PythonDebug is On.

34 Chapter 5. Apache Configuration Directives

This handler is not a valid argument to therec.add handler() function. For dynamic clean up registration, use
req.register cleanup() .

Once cleanups have started, it is not possible to register more of them. Therefore,req.register cleanup()
has no effect within this handler.

Cleanups registered with this directive will executeaftercleanups registered withreq.register cleanup() .

5.2 Filters

5.2.1 PythonInputFilter

Syntax: PythonInputFilter handler name
Context:server config
Module: mod python.c

Registers an input filterhandlerunder namename. Handler is a module name optionally followed:: and a callable
object name. If callable object name is omited, it will default to ”inputfilter”.Nameis the name under which the filter
is registered, by convention filter names are usually in all caps.

To activate the filter, use theAddInputFilter directive.

5.2.2 PythonOutputFilter

Syntax: PythonOutputFilter handler name
Context:server config
Module: mod python.c

Registers an output filterhandlerunder namename. Handler is a module name optionally followed:: and a callable
object name. If callable object name is omited, it will default to ”outputfilter”.Nameis the name under which the
filter is registered, by convention filter names are usually in all caps.

To activate the filter, use theAddOutputFilter directive.

5.3 Connection Handler

5.3.1 PythonConnectionHandler

Syntax: PythonConnectionHandler handler
Context:server config
Module: mod python.c

Specifies that the connection should be handled withhandlerconnection handler.Handler will be passed a single
argument - the connection object.

Handler is a module name optionally followed:: and a callable object name. If callable object name is omited, it
will default to ”connectionhandler”.

5.2. Filters 35

5.4 Other Directives

5.4.1 PythonEnablePdb

Syntax: PythonEnablePdb{On, Off}
Default: PythonEnablePdb Off
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

When On, modpython will execute the handler functions within the Python debugger pdb using the
pdb.runcall() function.

Because pdb is an interactive tool, start httpd from the command line with the -DONEPROCESS option when using
this directive. As soon as your handler code is entered, you will see a Pdb prompt allowing you to step through the
code and examine variables.

5.4.2 PythonDebug

Syntax: PythonDebug{On, Off}
Default: PythonDebug Off
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

Normally, the traceback output resulting from uncaught Python errors is sent to the error log. With PythonDebug On
directive specified, the output will be sent to the client (as well as the log), except when the error isIOError while
writing, in which case it will go to the error log.

This directive is very useful during the development process. It is recommended that you do not use it production
environment as it may reveal to the client unintended, possibly sensitive security information.

5.4.3 PythonImport

Syntax: PythonImportmodule interpretername
Context:server config
Module: mod python.c

Tells the server to import the Python module module at process startup under the specified interpreter name. This is
useful for initialization tasks that could be time consuming and should not be done at the request processing time, e.g.
initializing a database connection.

The import takes place at child process initialization, so the module will actually be imported once for every child
process spawned.

Note that at the time when the import takes place, the configuration is not completely read yet, so all other directives,
including PythonInterpreter have no effect on the behavior of modules imported by this directive. Because of this
limitation, the interpreter must be specified explicitely, and must match the name under which subsequent requests
relying on this operation will execute. If you are not sure under what interpreter name a request is running, examine
the interpreter member of the request object.

See also Multiple Interpreters.

36 Chapter 5. Apache Configuration Directives

5.4.4 PythonInterpPerDirectory

Syntax: PythonInterpPerDirectory{On, Off}
Default: PythonInterpPerDirectory Off
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

Instructs modpython to name subinterpreters using the directory of the file in the request (req.filename) rather
than the the server name. This means that scripts in different directories will execute in different subinterpreters as
opposed to the default policy where scripts in the same virtual server execute in the same subinterpreter, even if they
are in different directories.

For example, assume there is a ‘/directory/subdirectory’. ‘ /directory’ has an .htaccess file with a PythonHandler direc-
tive. ‘/directory/subdirectory’ doesn’t have an .htacess. By default, scripts in /directory and ‘/directory/subdirectory’
would execute in the same interpreter assuming both directories are accessed via the same virtual server. With Python-
InterpPerDirectory, there would be two different interpreters, one for each directory.

Note: In early phases of the request prior to the URI translation (PostReadRequestHandler and TransHandler) the path
is not yet known because the URI has not been translated. During those phases and with PythonInterpPerDirectory on,
all python code gets executed in the main interpreter. This may not be exactly what you want, but unfortunately there
is no way around this.

See Also:

Section 4.1 Multiple Interpreters
(pyapi-interps.html)

for more information

5.4.5 PythonInterpPerDirective

Syntax: PythonInterpPerDirective{On, Off}
Default: PythonInterpPerDirective Off
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

Instructs modpython to name subinterpreters using the directory in which the Python*Handler directive currently in
effect was encountered.

For example, assume there is a ‘/directory/subdirectory’. ‘ /directory’ has an .htaccess file with a PythonHandler direc-
tive. ‘/directory/subdirectory’ has another ‘.htacess’ file with another PythonHandler. By default, scripts in ‘/directory’
and ‘/directory/subdirectory’ would execute in the same interpreter assuming both directories are in the same virtual
server. With PythonInterpPerDirective, there would be two different interpreters, one for each directive.

See Also:

Section 4.1 Multiple Interpreters
(pyapi-interps.html)

for more information

5.4.6 PythonInterpreter

Syntax: PythonInterpreter name
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

5.4. Other Directives 37

Forces modpython to use interpreter namedname, overriding the default behaviour or behaviour dictated by
PythonIterpPerDirectory or PythonInterpPerDirective directive.

This directive can be used to force execution that would normally occur in different subinterpreters to run in the same
one. When pecified in the DocumentRoot, it forces the whole server to run in one subinterpreter.

See Also:

Section 4.1 Multiple Interpreters
(pyapi-interps.html)

for more information

5.4.7 PythonHandlerModule

Syntax: PythonHandlerModule module
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

PythonHandlerModule can be used an alternative to Python*Handler directives. The module specified in this handler
will be searched for existence of functions matching the default handler function names, and if a function is found, it
will be executed.

For example, instead of:

PythonAutenHandler mymodule
PythonHandler mymodule
PythonLogHandler mymodule

one can simply say

PythonHandlerModule mymodule

5.4.8 PythonAutoReload

Syntax: PythonAutoReload{On, Off}
Default: PythonAutoReload On
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

If set to Off, instructs modpython not to check the modification date of the module file.

By default, mod python checks the time-stamp of the file and reloads the module if the module’s file modification
date is later than the last import or reload. This way changed modules get automatically reimported, elimitaing the
need to restart the server for every change.

Disaling autoreload is useful in production environment where the modules do not change; it will save some processing
time and give a small performance gain.

5.4.9 PythonOptimize

Syntax: PythonOptimize{On, Off}
Default: PythonOptimize Off

38 Chapter 5. Apache Configuration Directives

Context:server config
Module: mod python.c

Enables Python optimization. Same as the Python-O option.

5.4.10 PythonOption

Syntax: PythonOption key value
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

Assigns a key value pair to a table that can be later retrieved by thereq.get options() function. This is useful
to pass information between the apache configuration files (‘httpd.conf’, ‘ .htaccess’, etc) and the Python programs.

5.4.11 PythonPath

Syntax: PythonPathpath
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

PythonPath directive sets the PythonPath. The path must be specified in Python list notation, e.g.

PythonPath "[’/usr/local/lib/python2.0’, ’/usr/local/lib/site_python’, ’/some/other/place’]"

The path specified in this directive will replace the path, not add to it. However, because the value of the directive is
evaled, to append a directory to the path, one can specify something like

PythonPath "sys.path+[’/mydir’]"

Mod python tries to minimize the number of evals associated with the PythonPath directive because evals are slow
and can negatively impact performance, especially when the directive is specified in an ‘.htaccess’ file which gets
parsed at every hit. Modpython will remember the arguments to the PythonPath directive in the un-evaled form,
and before evaling the value it will compare it to the remembered value. If the value is the same, no action is taken.
Because of this, you should not rely on the directive as a way to restore the pythonpath to some value if your code
changes it.

Note that this directive should not be used as a security measure since the Python path is easily manipulated from
within the scripts.

5.4. Other Directives 39

40

CHAPTER

SIX

Standard Handlers

6.1 Publisher Handler

Thepublisher handler is a good way to avoid writing your own handlers and focus on rapid application develop-
ment. It was inspired byZopeZPublisher.

6.1.1 Introduction

To use the handler, you need the following lines in your configuration

<Directory /some/path}
SetHandler python-program
PythonHandler mod_python.publisher

</Directory>

This handler allows access to functions and variables within a module via URL’s. For example, if you have the
following module, called ‘hello.py’:

""" Publisher example """

def say(req, what="NOTHING"):
return "I am saying %s" % what

A URL http://www.mysite.com/hello.py/say would return ‘I am saying NOTHING ’. A URL
http://www.mysite.com/hello.py/say?what=hello would return ‘I am saying hello ’.

6.1.2 The Publishing Algorithm

The Publisher handler maps a URI directly to a Python variable or callable object, then, respectively, returns it’s string
representation or calls it returning the string representation of the return value.

Traversal

The Publisher handler locates and imports the module specified in the URI. The module location is determined from
thereq.filename attribute. Before importing, the file extension, if any, is discarded.

If req.filename is empty, the module name defaults to ”index”.

41

Once module is imported, the remaining part of the URI up to the beginning of any query data (a.k.a. PATHINFO)
is used to find an object within the module. The Publisher handlertraversesthe path, one element at a time from left
to right, mapping the elements to Python object within the module.

If no path info was given in the URL, the Publisher handler will use the default value of ”index”.

The traversal will stop andHTTP NOTFOUNDwill be returned to the client if:

• Any of the traversed object’s names begin with an underscore (‘’). Use underscores to protect objects that
should not be accessible from the web.

• A module is encountered. Published objects cannot be modules for security reasons.

If an object in the path could not be found,HTTP NOT FOUNDis returned to the client.

Argument Matching and Invocation

Once the destination object is found, if it is callable and not a class, the Publisher handler will get a list of arguments
that the object expects. This list is compared with names of fields from HTML form data submitted by the client
via POSTor GET. Values of fields whose names match the names of callable object arguments will be passed as
strings. Any fields whose names do not match the names of callable argument objects will be silently dropped, unless
the destination callable object has a**kwargs style argument, in which case fields with unmatched names will be
passed in the**kwargs argument.

If the destination is not callable or is a class, then its string representation is returned to the client.

Authentication

The publisher handler provides simple ways to control access to modules and functions.

At every traversal step, the Publisher handler checks for presence ofauth and access attributes (in this
order), as well as auth realm attribute.

If auth is found and it is callable, it will be called with three arguments: theRequest object, a string
containing the user name and a string containing the password. If the return value ofauth is false, then
HTTP UNAUTHORIZEDis returned to the client (which will usually cause a password dialog box to appear).

If auth is a dictionary, then the user name will be matched against the key and the password against the value
associated with this key. If the key and password do not match,HTTP UNAUTHORIZEDis returned. Note that this
requires storing passwords as clear text in source code, which is not very secure.

auth can also be a constant. In this case, if it is false (i.e.None, 0, "" , etc.), thenHTTP UNAUTHORIZEDis
returned.

If there exists an auth realm string, it will be sent to the client as Authorization Realm (this is the text that
usually appears at the top of the password dialog box).

If access is found and it is callable, it will be called with two arguments: theRequest object and a string
containing the user name. If the return value ofaccess is false, thenHTTP FORBIDDENis returned to the
client.

If access is a list, then the user name will be matched against the list elements. If the user name is not in the
list, HTTP FORBIDDENis returned.

Similarly to auth , access can be a constant.

In the example below, only user ”eggs” with password ”spam” can access thehello function:

42 Chapter 6. Standard Handlers

__auth_realm__ = "Members only"

def __auth__(req, user, passwd):

if user == "eggs" and passwd == "spam" or \
user == "joe" and passwd == "eoj":

return 1
else:

return 0

def __access__(req, user):
if user == "eggs":

return 1
else:

return 0

def hello(req):
return "hello"

Here is the same functionality, but using an alternative technique:

__auth_realm__ = "Members only"
__auth__ = {"eggs":"spam", "joe":"eoj"}
__access__ = ["eggs"]

def hello(req):
return "hello"

Since functions cannot be assigned attributes, to protect a function, anauth or access function can be
defined within the function, e.g.:

def sensitive(req):

def __auth__(req, user, password):
if user == ’spam’ and password == ’eggs’:

let them in
return 1

else:
no access
return 0

something involving sensitive information
return ’sensitive information‘

Note that this technique will also work if auth or access is a constant, but will not work is they are a
dictionary or a list.

The auth and access mechanisms exist independently of the standardPythonAuthenHandler. It is
possible to use, for example, the handler to authenticate, then theaccess list to verify that the authenticated
user is allowed to a particular function.

NOTE: In order for mod python to access auth , the module containing it must first be imported. Therefore,
any module-level code will get executed during the import even ifauth is false. To truly protect a module from
being accessed, use other authentication mechanisms, e.g. the Apachemod auth or with a mod pythonPythonAu-

6.1. Publisher Handler 43

thenHandlerhandler.

6.1.3 Form Data

In the process of matching arguments, the Publisher handler creates an instance ofFieldStorageclass. A reference to
this instance is stored in an attributeform of theRequest object.

Since aFieldStorage can only be instantiated once per request, one must not attept to instantiateFieldStorage
when using the Publisher handler and should useRequest.form instead.

6.2 CGI Handler

CGI handler is a handler that emulates the CGI environment under modpython.

Note that this is not a ”true” CGI environment in that it is emulated at the Python level.stdin andstdout are
provided by substitutingsys.stdin and sys.stdout , and the environment is replaced by a dictionary. The
implication is that any outside programs called from within this environment viaos.system , etc. will not see the
environment available to the Python program, nor will they be able to read/write from standard input/output with the
results expected in a ”true” CGI environment.

The handler is provided as a stepping stone for the migration of legacy code away from CGI. It is not recommended
that you settle on using this handler as the preferred way to use modpython for the long term.

To use it, simply add this to your ‘.htaccess’ file:

SetHandler python-program
PythonHandler mod_python.cgihandler

As of version 2.7, the cgihandler will properly reload even indirectly imported modules. This is done by saving a list
of loaded modules (sys.modules) prior to executing a CGI script, and then comparing it with a list of imported modules
after the CGI script is done. Modules (except for whose whosefile attribute points to the standard Python library
location) will be deleted from sys.modules thereby forcing Python to load them again next time the CGI script imports
them.

If you do not want the above behavior, edit the ‘cgihandler.py’ file and comment out the code delimited by ###.

Tests show the cgihandler leaking some memory when processing a lot of file uploads. It is still not clear what causes
this. The way to work around this is to set the ApacheMaxRequestsPerChild to a non-zero value.

44 Chapter 6. Standard Handlers

APPENDIX

A

Changes from Previous Major Version
(2.x)

• Mod python 3.0 no longer works with Apache 1.3, only Apache 2.x is supported.

• Mod python no longer works with Python versions less than 2.2.1

• Mod python now supports Apache filters.

• Mod python now supports Apache connection handlers.

• Request object supports internalredirect().

• Connection object has read(), readline() and write().

• Server object has getconfig().

• Httpdapi handler has been deprecated.

• Zpublisher handler has been deprecated.

45

46

INDEX

Symbols
./configure, 3

--with-apxs, 4
--with-python , 4

apache
module, 16

--with-apxs
./configure, 4

--with-python
./configure, 4

A
aborted (connection attribute), 24
add() (table method), 18
add common vars() (request method), 18
add handler() (request method), 19
allow methods()

in module apache, 17
request method, 19

allowed (request attribute), 21
allowed methods (request attribute), 21
allowed xmethods (request attribute), 21
ap auth type (request attribute), 23
apache (extension module),16
apxs, 4
args (request attribute), 23
assbackwards (request attribute), 21
AUTH TYPE, 23

B
base server (connection attribute), 24
bytes sent (request attribute), 21

C
canonical filename (request attribute), 23
CGI, 44
Changes from

version 2.x, 45
chunked (request attribute), 21
clength (request attribute), 22
close() (filter method), 25

closed (filter attribute), 25
compiling

mod python, 3
config tree() (in module apache), 18
connection

handler, 16
object, 23

connection (request attribute), 20
content encoding (request attribute), 22
content type (request attribute), 22

D
defn line number (server attribute), 26
defn name (server attribute), 26
disable() (filter method), 25
disposition (Field attribute), 28
disposition options (Field attribute), 28
document root() (request method), 19
double reverse (connection attribute), 24

E
environment variables

AUTH TYPE, 23
PATH INFO, 23
PATH, 4
QUERY ARGS, 23
REMOTE ADDR, 24
REMOTE HOST, 24
REMOTE IDENT, 24
REMOTE USER, 23
REQUEST METHOD, 21
SERVER NAME, 26
SERVER PORT, 26
SERVER PROTOCOL, 21

eos sent (request attribute), 23
err headers out (request attribute), 22
error fname (server attribute), 26
expecting 100 (request attribute), 22

F
Field (class in util), 28

47

FieldStorage (class in util), 27
file (Field attribute), 28
filename

Field attribute, 28
request attribute, 23

filter
handler, 15
object, 25

finfo (request attribute), 23
flush() (filter method), 25

G
get basic auth pw() (request method), 19
get config() (request method), 19
get options()

request method, 20
server method, 26

get remote host() (request method), 19

H
handler, 10

connection, 16
filter, 15
request, 13

handler
filter attribute, 25
request attribute, 22

header only (request attribute), 21
headers in (request attribute), 22
headers out (request attribute), 22
hostname (request attribute), 21
httpdapi, 45
Httpdapy, 45

I
id (connection attribute), 24
install dso

make targets, 4
install py lib

make targets, 4
installation

UNIX, 3
internal redirect() (request method), 20
interpreter (request attribute), 22
is input (filter attribute), 25
is virtual (server attribute), 26

K
keep alive (server attribute), 26
keep alive max (server attribute), 26
keep alive timeout (server attribute), 26
keepalive (connection attribute), 24
keepalives (connection attribute), 24

L
libpython.a, 4
limit req fields (server attribute), 26
limit req fieldsize (server attribute), 26
limit req line (server attribute), 26
list (FieldStorage attribute), 27
local addr (connection attribute), 24
local host (connection attribute), 24
local ip (connection attribute), 24
log error() (in module apache), 17
loglevel (server attribute), 26

M
mailing list

mod python, 3
main (request attribute), 21
make targets

install dso, 4
install py lib, 4

make table() (in module apache), 18
method (request attribute), 21
method number (request attribute), 21
mod python

compiling, 3
mailing list, 3

mod python.so, 4
module

apache, 16
mtime (request attribute), 21

N
name

Field attribute, 28
filter attribute, 25

next (request attribute), 20
no cache (request attribute), 23
no local copy (request attribute), 23
notes

connection attribute, 25
request attribute, 22

O
object

connection, 23
filter, 25
request, 13
server, 25
table, 18

order
phase, 32

P
parse qs() (in module util), 28

48 Index

parse qsl() (in module util), 28
parsed uri (request attribute), 23
pass on() (filter method), 25
PATH, 4
path (server attribute), 26
PATH INFO, 23
path info (request attribute), 23
pathlen (server attribute), 26
phase

order, 32
phase (request attribute), 22
port (server attribute), 26
prev (request attribute), 21
proto num (request attribute), 21
protocol (request attribute), 21
proxyreq (request attribute), 21
Python*Handler Syntax, 31
PythonAccessHandler, 33
PythonAuthenHandler, 33
PythonAuthzHandler, 33
PythonAutoReload, 38
PythonCleanupHandler, 34
PythonConnectionHandler, 35
PythonDebug, 36
PythonEnablePdb, 36
PythonFixupHandler, 34
PythonHandler, 34
PythonHandlerModule, 38
PythonHeaderParserHandler, 32
PythonImport, 36
PythonInitHandler, 32
PythonInputFilter, 35
PythonInterpPerDirectory, 37
PythonInterpreter, 37
PythonLogHandler, 34
PythonOptimize, 38
PythonOption, 39
PythonOutputFilter, 35
PythonPath, 39
PythonPostReadRequestHandler, 32
PythonPythonInterpPerDirective, 37
PythonTransHandler, 32
PythonTypeHandler, 34

Q
QUERY ARGS, 23

R
range (request attribute), 22
read()

connection method, 24
filter method, 25
request method, 20

read body (request attribute), 22

read chunked (request attribute), 22
read length (request attribute), 22
readline()

connection method, 24
filter method, 25
request method, 20

readlines() (request method), 20
register cleanup()

request method, 20
server method, 26

remaining (request attribute), 22
REMOTE ADDR, 24
remote addr (connection attribute), 24
REMOTE HOST, 24
remote host (connection attribute), 24
REMOTE IDENT, 24
remote ip (connection attribute), 24
remote logname (connection attribute), 24
REMOTE USER, 23
req, 13
req (filter attribute), 25
request, 18

handler, 13
object, 13

REQUEST METHOD, 21
request time (request attribute), 21
RFC

RFC 1867, 28

S
sent bodyct (request attribute), 21
server

object, 25
server (request attribute), 20
server admin (server attribute), 26
server hostname (server attribute), 26
SERVER NAME, 26
SERVER PORT, 26
SERVER PROTOCOL, 21
server root() (in module apache), 18
set content length() (request method), 20
status (request attribute), 21
status line (request attribute), 21
subprocess env (request attribute), 22

T
table, 18

object, 18
table (class in apache), 18
the request (request attribute), 21
timeout (server attribute), 26
type (Field attribute), 28
type opyions (Field attribute), 28

Index 49

U
UNIX

installation, 3
unparsed uri (request attribute), 23
uri (request attribute), 23
used path info (request attribute), 23
user (request attribute), 22
util (extension module),27

V
value (Field attribute), 28
version 2.x

Changes from, 45
vlist validator (request attribute), 22

W
write()

connection method, 24
filter method, 25
request method, 20

Z
ZPublisher, 45

50 Index

	1 Introduction
	1.1 Performance
	1.2 Flexibility
	1.3 History

	2 Installation
	2.1 Prerequisites
	2.2 Compiling
	2.2.1 Running ./configure
	2.2.2 Running make

	2.3 Installing
	2.3.1 Running make install
	2.3.2 Configuring Apache

	2.4 Testing
	2.5 Troubleshooting

	3 Tutorial
	3.1 A Quick Start with the Publisher Handler
	3.2 Quick Overview of how Apache Handles Requests
	3.3 So what Exactly does Mod-python do?
	3.4 Now something More Complicated - Authentication

	4 Python API
	4.1 Multiple Interpreters
	4.2 Overview of a Request Handler
	4.3 Overview of a Filter Handler
	4.4 Overview of a Connection Handler
	4.5 apache -- Access to Apache Internals.
	4.5.1 Functions
	4.5.2 Table Object (mpprotect unhbox voidb@x kern .06emvbox {hrule width.55em}table)
	4.5.3 Request Object
	Request Methods
	Request Members

	4.5.4 Connection Object (mpprotect unhbox voidb@x kern .06emvbox {hrule width.55em}conn)
	Connection Methods
	Connection Members

	4.5.5 Filter Object (mpprotect unhbox voidb@x kern .06emvbox {hrule width.55em}filter)
	Filter Methods
	Filter Members

	4.5.6 Server Object (mpprotect unhbox voidb@x kern .06emvbox {hrule width.55em}server)
	Server Methods
	Server Members

	4.6 util -- Miscellaneous Utilities
	4.6.1 FieldStorage class
	4.6.2 Field class
	4.6.3 Other functions

	5 Apache Configuration Directives
	5.1 Request Handlers
	5.1.1 Python*Handler Directive Syntax
	5.1.2 PythonPostReadRequestHandler
	5.1.3 PythonTransHandler
	5.1.4 PythonHeaderParserHandler
	5.1.5 PythonInitHandler
	5.1.6 PythonAccessHandler
	5.1.7 PythonAuthenHandler
	5.1.8 PythonAuthzHandler
	5.1.9 PythonTypeHandler
	5.1.10 PythonFixupHandler
	5.1.11 PythonHandler
	5.1.12 PythonLogHandler
	5.1.13 PythonCleanupHandler

	5.2 Filters
	5.2.1 PythonInputFilter
	5.2.2 PythonOutputFilter

	5.3 Connection Handler
	5.3.1 PythonConnectionHandler

	5.4 Other Directives
	5.4.1 PythonEnablePdb
	5.4.2 PythonDebug
	5.4.3 PythonImport
	5.4.4 PythonInterpPerDirectory
	5.4.5 PythonInterpPerDirective
	5.4.6 PythonInterpreter
	5.4.7 PythonHandlerModule
	5.4.8 PythonAutoReload
	5.4.9 PythonOptimize
	5.4.10 PythonOption
	5.4.11 PythonPath

	6 Standard Handlers
	6.1 Publisher Handler
	6.1.1 Introduction
	6.1.2 The Publishing Algorithm
	Traversal
	Argument Matching and Invocation
	Authentication

	6.1.3 Form Data

	6.2 CGI Handler

	A Changes from Previous Major Version (2.x)
	Index

